Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 46

1.

MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks.

Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP.

Cell. 2005 Dec 29;123(7):1213-26. Erratum in: Cell. 2008 May 2;133(3):549.

2.

MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes.

Stucki M, Jackson SP.

DNA Repair (Amst). 2004 Aug-Sep;3(8-9):953-7. Review.

PMID:
15279781
3.

gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes.

Stucki M, Jackson SP.

DNA Repair (Amst). 2006 May 10;5(5):534-43. Review.

PMID:
16531125
4.

Crosstalk between histone modifications during the DNA damage response.

van Attikum H, Gasser SM.

Trends Cell Biol. 2009 May;19(5):207-17. doi: 10.1016/j.tcb.2009.03.001. Review.

PMID:
19342239
6.

NBS1 and its functional role in the DNA damage response.

Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K.

DNA Repair (Amst). 2004 Aug-Sep;3(8-9):855-61. Review.

PMID:
15279770
7.

Checkpoint mediators: relaying signals from DNA strand breaks.

Canman CE.

Curr Biol. 2003 Jun 17;13(12):R488-90. Review.

8.

Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks.

Svetlova MP, Solovjeva LV, Tomilin NV.

Mutat Res. 2010 Mar 1;685(1-2):54-60. doi: 10.1016/j.mrfmmm.2009.08.001. Review.

PMID:
19682466
9.

Characteristics of gamma-H2AX foci at DNA double-strand breaks sites.

Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM.

Biochem Cell Biol. 2003 Jun;81(3):123-9. Review.

PMID:
12897845
10.

Does gammaH2AX foci formation depend on the presence of DNA double strand breaks?

Takahashi A, Ohnishi T.

Cancer Lett. 2005 Nov 18;229(2):171-9. Review. Erratum in: Cancer Lett. 2006 May 8;236(1):155-6.

PMID:
16129552
11.

MDC1: The art of keeping things in focus.

Jungmichel S, Stucki M.

Chromosoma. 2010 Aug;119(4):337-49. doi: 10.1007/s00412-010-0266-9. Review.

PMID:
20224865
12.

Structure and function of histone H2AX.

Pinto DM, Flaus A.

Subcell Biochem. 2010;50:55-78. doi: 10.1007/978-90-481-3471-7_4. Review.

PMID:
20012577
13.

DNA repair: the importance of phosphorylating histone H2AX.

Lowndes NF, Toh GW.

Curr Biol. 2005 Feb 8;15(3):R99-R102. Review.

14.

Ros-induced histone modifications and their role in cell survival and cell death.

Monks TJ, Xie R, Tikoo K, Lau SS.

Drug Metab Rev. 2006;38(4):755-67. Review.

PMID:
17145700
15.

gamma-H2AX as a therapeutic target for improving the efficacy of radiation therapy.

Kao J, Milano MT, Javaheri A, Garofalo MC, Chmura SJ, Weichselbaum RR, Kron SJ.

Curr Cancer Drug Targets. 2006 May;6(3):197-205. Review.

PMID:
16712457
16.

Histone H2A phosphorylation in DNA double-strand break repair.

Foster ER, Downs JA.

FEBS J. 2005 Jul;272(13):3231-40. Review.

17.

Histone H2A variants H2AX and H2AZ.

Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W.

Curr Opin Genet Dev. 2002 Apr;12(2):162-9. Review.

PMID:
11893489
18.

Replication protein A phosphorylation and the cellular response to DNA damage.

Binz SK, Sheehan AM, Wold MS.

DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1015-24. Review.

PMID:
15279788
19.

H2AX: tailoring histone H2A for chromatin-dependent genomic integrity.

Li A, Eirín-López JM, Ausió J.

Biochem Cell Biol. 2005 Aug;83(4):505-15. Review.

PMID:
16094454
20.

H2AX: the histone guardian of the genome.

Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A.

DNA Repair (Amst). 2004 Aug-Sep;3(8-9):959-67. Review.

PMID:
15279782
Items per page

Supplemental Content

Support Center