Send to

Choose Destination

Links from PubMed

See comment in PubMed Commons below
J Muscle Res Cell Motil. 2004;25(8):657-65. Epub 2005 Feb 24.

Telokin mediates Ca2+-desensitization through activation of myosin phosphatase in phasic and tonic smooth muscle.

Author information

  • 1Department of Molecular Physiology, University of Virginia, Health Sciences System, Charlottesville, VA 22908-0736, USA.


Telokin, a 17 kDa smooth muscle specific protein, consists of the C-terminal domain of MLCK, is phosphorylated by PKA and PKG at Ser13 in vivo (Wu et al. (1998) J Biol Chem 273: 11362-11369; Walker et al. (2001) J. Biol Chem 276: 24519-24524) and is proposed to induce Ca2+-desensitization through activation of myosin phosphatase (Wu et al. (1998) J. Biol Chem 273: 11362-11369). Telokin is reported to be highly expressed in phasic with only trace amounts in tonic smooth muscle. In alpha-toxin permeabilized femoral artery, 5 microM 8-Br-cGMP induced a two-fold increase in telokin phosphorylation and a maximal 30% relaxation of Ca2+-activated force compared to a 90% relaxation in phasic ileum muscle consistent with the relative amounts of telokin expressed in ileum, 27+/-4.6 microM SEM compared to 6+/-1.7 microM SEM, in femoral artery. Recombinant Wt telokin and the phospho-telokin mutant, S13D relaxed telokin-depleted femoral artery, by 38+/-8% SEM and 60+/-20% SEM, respectively. 8-Br-cGMP increased the rate and decreased the amplitude of force development initiated by photolysis of caged ATP in alpha-toxin permeabilized ileum and femoral artery smooth muscle, consistent with a cGMP-induced increase in phosphatase activity. Similarly, in telokin depleted ileum, recombinant S13D mutant telokin significantly increased the rate (0.08+/-0.01 s-1 vs. 014+/-0.02 s-1) and decreased force amplitude. In conclusion, our data support a role for telokin in cyclic nucleotide-induced relaxation of not only phasic, but also tonic smooth muscle and that this relaxation is mediated by activation of myosin phosphatase activity leading to a decrease in myosin light chain phosphorylation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk