Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense.

Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF.

Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):467-72. Epub 2004 Dec 30.

2.
3.

Scavenging of reactive nitrogen species by mycobacterial truncated hemoglobins.

Ascenzi P, Visca P.

Methods Enzymol. 2008;436:317-37. doi: 10.1016/S0076-6879(08)36018-2. Review.

PMID:
18237641
4.

[Development of antituberculous drugs: current status and future prospects].

Tomioka H, Namba K.

Kekkaku. 2006 Dec;81(12):753-74. Review. Japanese.

PMID:
17240921
5.

[Novel type of antimicrobial mechanism in host macrophages against mycobacterial infections].

Shimizu T, Tomioka H.

Nihon Hansenbyo Gakkai Zasshi. 2009 Sep;78(3):283-91. Review. Japanese.

PMID:
19803380
6.

The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins.

Bowman LA, McLean S, Poole RK, Fukuto JM.

Adv Microb Physiol. 2011;59:135-219. doi: 10.1016/B978-0-12-387661-4.00006-9. Review.

PMID:
22114842
7.

The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.

Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S.

Free Radic Biol Med. 2013 Dec;65:1174-94. doi: 10.1016/j.freeradbiomed.2013.09.001. Epub 2013 Sep 12. Review.

PMID:
24036104
8.

The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications.

Chiueh CC, Rauhala P.

Free Radic Res. 1999 Dec;31(6):641-50. Review.

PMID:
10630687
9.

Redox homeostasis in mycobacteria: the key to tuberculosis control?

Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJ.

Expert Rev Mol Med. 2011 Dec 16;13:e39. doi: 10.1017/S1462399411002079. Review.

10.

The thioredoxin antioxidant system.

Lu J, Holmgren A.

Free Radic Biol Med. 2014 Jan;66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036. Epub 2013 Jul 27. Review.

PMID:
23899494
11.

Redox biology of tuberculosis pathogenesis.

Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A.

Adv Microb Physiol. 2012;60:263-324. doi: 10.1016/B978-0-12-398264-3.00004-8. Review.

PMID:
22633061
12.

Targeting the histidine pathway in Mycobacterium tuberculosis.

Lunardi J, Nunes JE, Bizarro CV, Basso LA, Santos DS, Machado P.

Curr Top Med Chem. 2013;13(22):2866-84. Review.

PMID:
24111909
13.

Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.

Bailo R, Bhatt A, AĆ­nsa JA.

Biochem Pharmacol. 2015 Aug 1;96(3):159-67. doi: 10.1016/j.bcp.2015.05.001. Epub 2015 May 16. Review.

PMID:
25986884
14.

Drug targeting of heme proteins in Mycobacterium tuberculosis.

McLean KJ, Munro AW.

Drug Discov Today. 2017 Mar;22(3):566-575. doi: 10.1016/j.drudis.2016.11.004. Epub 2016 Nov 14. Review.

PMID:
27856345
15.

From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species.

Downs DM, Ernst DC.

Mol Microbiol. 2015 Apr;96(2):211-9. doi: 10.1111/mmi.12945. Epub 2015 Feb 26. Review.

Supplemental Content

Support Center