Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 18

2.

Erythropoietin gene regulation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors.

Huang LE, Ho V, Arany Z, Krainc D, Galson D, Tendler D, Livingston DM, Bunn HF.

Kidney Int. 1997 Feb;51(2):548-52. Review.

3.

The HIF pathway: implications for patterns of gene expression in cancer.

Wykoff CC, Pugh CW, Harris AL, Maxwell PH, Ratcliffe PJ.

Novartis Found Symp. 2001;240:212-25; discussion 225-31. Review.

PMID:
11727931
4.

Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression.

Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW.

J Exp Biol. 1998 Apr;201(Pt 8):1153-62. Review.

5.

Hypoxia-inducible factor 1 (HIF-1) in cancer.

Quintero M, Mackenzie N, Brennan PA.

Eur J Surg Oncol. 2004 Jun;30(5):465-8. Review.

PMID:
15135470
6.

How to overcome (and exploit) tumor hypoxia for targeted gene therapy.

Greco O, Marples B, Joiner MC, Scott SD.

J Cell Physiol. 2003 Dec;197(3):312-25. Review.

PMID:
14566961
7.

NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states.

Ellen TP, Ke Q, Zhang P, Costa M.

Carcinogenesis. 2008 Jan;29(1):2-8. Epub 2007 Oct 4. Review.

PMID:
17916902
8.

Hypoxia-inducible factor-1 in human breast and prostate cancer.

Kimbro KS, Simons JW.

Endocr Relat Cancer. 2006 Sep;13(3):739-49. Review.

9.

HIF-1: an oxygen and metal responsive transcription factor.

Maxwell P, Salnikow K.

Cancer Biol Ther. 2004 Jan;3(1):29-35. Epub 2004 Jan 10. Review.

PMID:
14726713
10.

Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy.

Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJ, Sahni S, Richardson DR.

Biochim Biophys Acta. 2014 Jan;1845(1):1-19. doi: 10.1016/j.bbcan.2013.11.002. Epub 2013 Nov 21. Review.

PMID:
24269900
11.

The HIF-1-active microenvironment: an environmental target for cancer therapy.

Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M.

Adv Drug Deliv Rev. 2009 Jul 2;61(7-8):623-32. doi: 10.1016/j.addr.2009.01.006. Epub 2009 May 3. Review.

PMID:
19409433
12.

A microRNA component of the hypoxic response.

Kulshreshtha R, Davuluri RV, Calin GA, Ivan M.

Cell Death Differ. 2008 Apr;15(4):667-71. doi: 10.1038/sj.cdd.4402310. Epub 2008 Jan 25. Review.

13.

Hypoxia, stem cells and bone tumor.

Zeng W, Wan R, Zheng Y, Singh SR, Wei Y.

Cancer Lett. 2011 Dec 27;313(2):129-36. doi: 10.1016/j.canlet.2011.09.023. Epub 2011 Sep 29. Review.

14.

Hypoxia response and microRNAs: no longer two separate worlds.

Ivan M, Harris AL, Martelli F, Kulshreshtha R.

J Cell Mol Med. 2008 Sep-Oct;12(5A):1426-31. doi: 10.1111/j.1582-4934.2008.00398.x. Epub 2008 Jul 8. Review.

15.

Hypoxic regulation of the noncoding genome and NEAT1.

Choudhry H, Mole DR.

Brief Funct Genomics. 2016 May;15(3):174-85. doi: 10.1093/bfgp/elv050. Epub 2015 Nov 20. Review.

16.

Hypoxia-specific gene expression for ischemic disease gene therapy.

Kim HA, Mahato RI, Lee M.

Adv Drug Deliv Rev. 2009 Jul 2;61(7-8):614-22. doi: 10.1016/j.addr.2009.04.009. Epub 2009 Apr 23. Review.

PMID:
19394379
17.

Effect of hypoxia on the tumor phenotype: the neuroblastoma and breast cancer models.

Holmquist L, Löfstedt T, Påhlman S.

Adv Exp Med Biol. 2006;587:179-93. Review.

PMID:
17163166
18.

Use of hypoxia-regulated gene expression in tumor-specific gene therapy.

Ruan H, Deen DF.

Curr Opin Investig Drugs. 2001 Jun;2(6):839-43. Review.

PMID:
11572667

Supplemental Content

Support Center