Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33

1.

7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes.

Nguyen VT, Kiss T, Michels AA, Bensaude O.

Nature. 2001 Nov 15;414(6861):322-5.

PMID:
11713533
2.

Cellular control of gene expression by T-type cyclin/CDK9 complexes.

Garriga J, GraƱa X.

Gene. 2004 Aug 4;337:15-23. Review.

PMID:
15276198
3.

RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners.

Michels AA, Bensaude O.

Biotechnol J. 2008 Aug;3(8):1022-32. doi: 10.1002/biot.200800104. Review.

PMID:
18655042
4.

Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.

Romano G, Kasten M, De Falco G, Micheli P, Khalili K, Giordano A.

J Cell Biochem. 1999 Dec 1;75(3):357-68. Review.

PMID:
10536359
5.

Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.

Majello B, Napolitano G.

Front Biosci. 2001 Oct 1;6:D1358-68. Review.

PMID:
11578967
6.

Cyclins that don't cycle--cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size.

Sano M, Schneider MD.

Cell Cycle. 2003 Mar-Apr;2(2):99-104. Review.

PMID:
12695656
7.

Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages.

Rice AP, Herrmann CH.

Curr HIV Res. 2003 Oct;1(4):395-404. Review. Erratum in: Curr HIV Res. 2004 Apr;2(2):205.

PMID:
15049426
8.

CDK9: from basal transcription to cancer and AIDS.

De Falco G, Giordano A.

Cancer Biol Ther. 2002 Jul-Aug;1(4):342-7. Review.

PMID:
12432243
9.

Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb.

Wood A, Shilatifard A.

Cell Cycle. 2006 May;5(10):1066-8. Epub 2006 May 15. Review.

PMID:
16721054
10.

CDK9 a potential target for drug development.

Canduri F, Perez PC, Caceres RA, de Azevedo WF Jr.

Med Chem. 2008 May;4(3):210-8. Review.

PMID:
18473913
11.

P-TEFb goes viral.

Zaborowska J, Isa NF, Murphy S.

Inside Cell. 2016 Apr;1(2):106-116. Epub 2015 Nov 25. Review.

12.

P-TEFb goes viral.

Zaborowska J, Isa NF, Murphy S.

Bioessays. 2016 Jul;38 Suppl 1:S75-85. doi: 10.1002/bies.201670912. Review.

PMID:
27417125
13.

Role of cyclinT/Cdk9 complex in basal and regulated transcription (review).

Napolitano G, Majello B, Lania L.

Int J Oncol. 2002 Jul;21(1):171-7. Review.

PMID:
12063565
14.

Transcription: surprising role for an elusive small nuclear RNA.

Blencowe BJ.

Curr Biol. 2002 Feb 19;12(4):R147-9. Review.

15.

CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation.

Cho S, Schroeder S, Ott M.

Cell Cycle. 2010 May;9(9):1697-705. Epub 2010 May 29. Review.

16.

RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.

Bowman EA, Kelly WG.

Nucleus. 2014 May-Jun;5(3):224-36. doi: 10.4161/nucl.29347. Epub 2014 May 30. Review.

17.

Expanding role of cyclin dependent kinases in cytokine inducible gene expression.

Brasier AR.

Cell Cycle. 2008 Sep 1;7(17):2661-6. Epub 2008 Sep 12. Review.

18.

CDK9 (PITALRE): a multifunctional cdc2-related kinase.

de Falco G, Giordano A.

J Cell Physiol. 1998 Dec;177(4):501-6. Review.

PMID:
10092203
19.

The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE.

Paparidis NF, Durvale MC, Canduri F.

Mol Biosyst. 2017 Jan 31;13(2):246-276. doi: 10.1039/c6mb00387g. Review.

PMID:
27833949
20.

Role of the HIV-1 positive elongation factor P-TEFb and inhibitors thereof.

Wang Y, Liu XY, De Clercq E.

Mini Rev Med Chem. 2009 Mar;9(3):379-85. Review.

PMID:
19275730

Supplemental Content

Support Center