Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia.

Fuller DD, Zabka AG, Baker TL, Mitchell GS.

J Appl Physiol (1985). 2001 May;90(5):2001-6; discussion 2000.

2.

Long term facilitation of phrenic motor output.

Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS.

Respir Physiol. 2000 Jul;121(2-3):135-46. Review.

PMID:
10963770
3.

NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.

MacFarlane PM, Satriotomo I, Windelborn JA, Mitchell GS.

J Physiol. 2009 May 1;587(Pt 9):1931-42. doi: 10.1113/jphysiol.2008.165597. Epub 2009 Feb 23. Review.

4.

Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia.

Baker TL, Fuller DD, Zabka AG, Mitchell GS.

Respir Physiol. 2001 Dec;129(1-2):25-35. Review.

PMID:
11738644
5.

Invited review: Intermittent hypoxia and respiratory plasticity.

Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA, Bavis RW, Mack KJ, Olson EB Jr.

J Appl Physiol (1985). 2001 Jun;90(6):2466-75. Review.

6.

Similarities and differences in mechanisms of phrenic and hypoglossal motor facilitation.

Baker-Herman TL, Strey KA.

Respir Physiol Neurobiol. 2011 Oct 15;179(1):48-56. doi: 10.1016/j.resp.2011.06.022. Epub 2011 Jul 2. Review.

7.

Serotonin and NMDA receptors in respiratory long-term facilitation.

Ling L.

Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):233-41. doi: 10.1016/j.resp.2008.05.016. Review.

8.

Acute intermittent hypoxia induced neural plasticity in respiratory motor control.

Xing T, Fong AY, Bautista TG, Pilowsky PM.

Clin Exp Pharmacol Physiol. 2013 Sep;40(9):602-9. doi: 10.1111/1440-1681.12129. Review.

PMID:
23781949
9.

Spinal plasticity following intermittent hypoxia: implications for spinal injury.

Dale-Nagle EA, Hoffman MS, MacFarlane PM, Satriotomo I, Lovett-Barr MR, Vinit S, Mitchell GS.

Ann N Y Acad Sci. 2010 Jun;1198:252-9. doi: 10.1111/j.1749-6632.2010.05499.x. Review.

10.

Hypoxia-induced phrenic long-term facilitation: emergent properties.

Devinney MJ, Huxtable AG, Nichols NL, Mitchell GS.

Ann N Y Acad Sci. 2013 Mar;1279:143-53. doi: 10.1111/nyas.12085. Review.

11.

Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea?

Mateika JH, Narwani G.

Exp Physiol. 2009 Mar;94(3):279-96. doi: 10.1113/expphysiol.2008.045153. Epub 2008 Dec 5. Review.

12.

Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity.

Strey KA, Baertsch NA, Baker-Herman TL.

Respir Physiol Neurobiol. 2013 Nov 1;189(2):384-94. doi: 10.1016/j.resp.2013.06.023. Epub 2013 Jun 28. Review.

13.

Reactive oxygen species and respiratory plasticity following intermittent hypoxia.

MacFarlane PM, Wilkerson JE, Lovett-Barr MR, Mitchell GS.

Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):263-71. doi: 10.1016/j.resp.2008.07.008. Review.

14.

Experimental protocols and preparations to study respiratory long term facilitation.

Mateika JH, Sandhu KS.

Respir Physiol Neurobiol. 2011 Apr 30;176(1-2):1-11. doi: 10.1016/j.resp.2011.01.007. Epub 2011 Feb 1. Review.

15.

Respiratory plasticity following intermittent hypoxia: roles of protein phosphatases and reactive oxygen species.

Wilkerson JE, Macfarlane PM, Hoffman MS, Mitchell GS.

Biochem Soc Trans. 2007 Nov;35(Pt 5):1269-72. Review.

PMID:
17956327
16.

The impact of inflammation on respiratory plasticity.

Hocker AD, Stokes JA, Powell FL, Huxtable AG.

Exp Neurol. 2017 Jan;287(Pt 2):243-253. doi: 10.1016/j.expneurol.2016.07.022. Epub 2016 Jul 27. Review.

PMID:
27476100

Supplemental Content

Support Center