Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Structural basis for Sfm1 functioning as a protein arginine methyltransferase.

Lv F, Zhang T, Zhou Z, Gao S, Wong CC, Zhou JQ, Ding J.

Cell Discov. 2015 Dec 29;1:15037. doi: 10.1038/celldisc.2015.37.

2.

The Role of Protein Arginine Methyltransferases in Inflammatory Responses.

Kim JH, Yoo BC, Yang WS, Kim E, Hong S, Cho JY.

Mediators Inflamm. 2016;2016:4028353. doi: 10.1155/2016/4028353. Review.

3.

A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.

Debler EW, Jain K, Warmack RA, Feng Y, Clarke SG, Blobel G, Stavropoulos P.

Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2068-73. doi: 10.1073/pnas.1525783113.

4.

Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone.

Borbolla-Vázquez J, Orozco E, Betanzos A, Rodríguez MA.

Parasit Vectors. 2015 Apr 10;8:219. doi: 10.1186/s13071-015-0820-7.

5.

The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.

Stopa N, Krebs JE, Shechter D.

Cell Mol Life Sci. 2015 Jun;72(11):2041-59. doi: 10.1007/s00018-015-1847-9. Review.

6.

The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis.

Zurita Rendón O, Silva Neiva L, Sasarman F, Shoubridge EA.

Hum Mol Genet. 2014 Oct 1;23(19):5159-70. doi: 10.1093/hmg/ddu239.

7.

An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae.

Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen M, Aiyar RS, Proctor M, Sakhanenko NA, Galas DJ, Gagneur J, Deutschbauer A, Steinmetz LM.

Genetics. 2014 Mar;196(3):853-65. doi: 10.1534/genetics.113.160291.

8.

Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1.

Pratte D, Singh U, Murat G, Kressler D.

PLoS One. 2013 Dec 2;8(12):e82741. doi: 10.1371/journal.pone.0082741.

9.

Ndufaf5 deficiency in the Dictyostelium model: new roles in autophagy and development.

Carilla-Latorre S, Annesley SJ, Muñoz-Braceras S, Fisher PR, Escalante R.

Mol Biol Cell. 2013 May;24(10):1519-28. doi: 10.1091/mbc.E12-11-0796.

10.

Genomic insights of protein arginine methyltransferase Hmt1 binding reveals novel regulatory functions.

Milliman EJ, Hu Z, Yu MC.

BMC Genomics. 2012 Dec 26;13:728. doi: 10.1186/1471-2164-13-728.

11.

The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum.

Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR.

PLoS One. 2012;7(5):e38324. doi: 10.1371/journal.pone.0038324.

12.

Arginine methylation of RNA-binding proteins regulates cell function and differentiation.

Blackwell E, Ceman S.

Mol Reprod Dev. 2012 Mar;79(3):163-75. doi: 10.1002/mrd.22024. Review.

13.

A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis.

Lissina E, Young B, Urbanus ML, Guan XL, Lowenson J, Hoon S, Baryshnikova A, Riezman I, Michaut M, Riezman H, Cowen LE, Wenk MR, Clarke SG, Giaever G, Nislow C.

PLoS Genet. 2011 Oct;7(10):e1002332. doi: 10.1371/journal.pgen.1002332.

14.

Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K.

PLoS One. 2011;6(8):e23168. doi: 10.1371/journal.pone.0023168.

15.

Characterization of the PRMT gene family in rice reveals conservation of arginine methylation.

Ahmad A, Dong Y, Cao X.

PLoS One. 2011;6(8):e22664. doi: 10.1371/journal.pone.0022664.

16.

Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters.

Murphy K, O'Sullivan O, Rea MC, Cotter PD, Ross RP, Hill C.

PLoS One. 2011;6(7):e20852. doi: 10.1371/journal.pone.0020852.

17.

Protein arginine methylation in parasitic protozoa.

Fisk JC, Read LK.

Eukaryot Cell. 2011 Aug;10(8):1013-22. doi: 10.1128/EC.05103-11. Review.

18.

The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase.

Webb KJ, Al-Hadid Q, Zurita-Lopez CI, Young BD, Lipson RS, Clarke SG.

J Biol Chem. 2011 May 27;286(21):18405-13. doi: 10.1074/jbc.M110.200410.

19.

Identification of lysine 37 of histone H2B as a novel site of methylation.

Gardner KE, Zhou L, Parra MA, Chen X, Strahl BD.

PLoS One. 2011 Jan 13;6(1):e16244. doi: 10.1371/journal.pone.0016244.

20.

A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase.

Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG.

J Biol Chem. 2010 Nov 26;285(48):37598-606. doi: 10.1074/jbc.M110.170787.

Supplemental Content

Support Center