Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 192

1.

Mllt10 knockout mouse model reveals critical role of Af10-dependent H3K79 methylation in midfacial development.

Ogoh H, Yamagata K, Nakao T, Sandell LL, Yamamoto A, Yamashita A, Tanga N, Suzuki M, Abe T, Kitabayashi I, Watanabe T, Sakai D.

Sci Rep. 2017 Sep 20;7(1):11922. doi: 10.1038/s41598-017-11745-5.

2.

Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.

Wen L, Fu L, Shi YB.

FASEB J. 2017 Nov;31(11):4821-4831. doi: 10.1096/fj.201700131R. Epub 2017 Jul 24.

PMID:
28739643
3.

Histone modifications as regulators of life and death in Saccharomyces cerevisiae.

Fahrenkrog B.

Microb Cell. 2015 Dec 31;3(1):1-13. doi: 10.15698/mic2016.01.472. Review.

4.

Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection.

Bantele SC, Ferreira P, Gritenaite D, Boos D, Pfander B.

Elife. 2017 Jan 12;6. pii: e21687. doi: 10.7554/eLife.21687.

5.

Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae).

Serrano ÉA, Araya-Jaime C, Suárez-Villota EY, Oliveira C, Foresti F.

Comp Cytogenet. 2016 May 18;10(2):255-68. doi: 10.3897/CompCytogen.v10i2.7939. eCollection 2016.

6.

The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.

Gartenberg MR, Smith JS.

Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243. Review.

7.

Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives.

Song Y, Wu F, Wu J.

J Hematol Oncol. 2016 Jun 17;9(1):49. doi: 10.1186/s13045-016-0279-9. Review.

8.

The Epigenetic Pathways to Ribosomal DNA Silencing.

Srivastava R, Srivastava R, Ahn SH.

Microbiol Mol Biol Rev. 2016 Jun 1;80(3):545-63. doi: 10.1128/MMBR.00005-16. Print 2016 Sep. Review.

9.

The many faces of histone H3K79 methylation.

Farooq Z, Banday S, Pandita TK, Altaf M.

Mutat Res Rev Mutat Res. 2016 Apr-Jun;768:46-52. doi: 10.1016/j.mrrev.2016.03.005. Epub 2016 Mar 31. Review.

10.

Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.

Morera L, Lübbert M, Jung M.

Clin Epigenetics. 2016 May 24;8:57. doi: 10.1186/s13148-016-0223-4. eCollection 2016. Review.

11.

DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.

Huang D, Piening BD, Kennedy JJ, Lin C, Jones-Weinert CW, Yan P, Paulovich AG.

Genetics. 2016 May;203(1):353-68. doi: 10.1534/genetics.115.185231. Epub 2016 Mar 26.

12.

Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation.

Zhou L, Holt MT, Ohashi N, Zhao A, Müller MM, Wang B, Muir TW.

Nat Commun. 2016 Feb 2;7:10589. doi: 10.1038/ncomms10589.

13.

Dysregulation of protein methyltransferases in human cancer: An emerging target class for anticancer therapy.

Hamamoto R, Nakamura Y.

Cancer Sci. 2016 Apr;107(4):377-84. doi: 10.1111/cas.12884. Epub 2016 Feb 9. Review.

14.

The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target.

Wong M, Polly P, Liu T.

Am J Cancer Res. 2015 Aug 15;5(9):2823-37. eCollection 2015.

15.

Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin.

Larin ML, Harding K, Williams EC, Lianga N, Doré C, Pilon S, Langis É, Yanofsky C, Rudner AD.

PLoS Genet. 2015 Nov 20;11(11):e1005425. doi: 10.1371/journal.pgen.1005425. eCollection 2015 Nov.

16.

Histone methylation modifiers in cellular signaling pathways.

Alam H, Gu B, Lee MG.

Cell Mol Life Sci. 2015 Dec;72(23):4577-92. doi: 10.1007/s00018-015-2023-y. Epub 2015 Aug 25. Review.

17.

A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites.

Reed BJ, Locke MN, Gardner RG.

J Biol Chem. 2015 Aug 14;290(33):20601-12. doi: 10.1074/jbc.M115.650952. Epub 2015 Jul 6.

18.

Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia.

Gallipoli P, Giotopoulos G, Huntly BJ.

Ther Adv Hematol. 2015 Jun;6(3):103-19. doi: 10.1177/2040620715577614. Review.

19.

Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond.

Chen CW, Armstrong SA.

Exp Hematol. 2015 Aug;43(8):673-84. doi: 10.1016/j.exphem.2015.05.012. Epub 2015 Jun 25. Review.

20.

Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae.

Sneppen K, Dodd IB.

Epigenetics. 2015;10(4):293-302. doi: 10.1080/15592294.2015.1017200. Epub 2015 Apr 1.

Supplemental Content

Support Center