Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 39

1.

2016 ATVB Plenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis an Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage.

Schmidt AM.

Arterioscler Thromb Vasc Biol. 2017 Apr;37(4):613-621. doi: 10.1161/ATVBAHA.117.307263. Epub 2017 Feb 9. Review.

PMID:
28183700
2.

In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein.

McIntee FL, Giannoni P, Blais S, Sommer G, Neubert TA, Rostagno A, Ghiso J.

Front Aging Neurosci. 2016 Sep 27;8:223. eCollection 2016.

3.

Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease?

Louveau A, Da Mesquita S, Kipnis J.

Neuron. 2016 Sep 7;91(5):957-73. doi: 10.1016/j.neuron.2016.08.027. Review.

PMID:
27608759
4.

RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage.

Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA, Nitti M.

Oxid Med Cell Longev. 2016;2016:9348651. doi: 10.1155/2016/9348651. Epub 2016 May 25. Review.

5.

Decreased Plasma Aβ in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction.

Löffler T, Flunkert S, Temmel M, Hutter-Paier B.

Front Neurosci. 2016 Jun 1;10:232. doi: 10.3389/fnins.2016.00232. eCollection 2016.

6.

High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Aβ deposition in an Alzheimer mouse model.

Lubitz I, Ricny J, Atrakchi-Baranes D, Shemesh C, Kravitz E, Liraz-Zaltsman S, Maksin-Matveev A, Cooper I, Leibowitz A, Uribarri J, Schmeidler J, Cai W, Kristofikova Z, Ripova D, LeRoith D, Schnaider-Beeri M.

Aging Cell. 2016 Apr;15(2):309-16. doi: 10.1111/acel.12436. Epub 2016 Jan 19.

7.

RAGE mediated intracellular Aβ uptake contributes to the breakdown of tight junction in retinal pigment epithelium.

Park SW, Kim JH, Park SM, Moon M, Lee KH, Park KH, Park WJ, Kim JH.

Oncotarget. 2015 Nov 3;6(34):35263-73. doi: 10.18632/oncotarget.5894.

8.

Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes.

Sagare AP, Sweeney MD, Makshanoff J, Zlokovic BV.

Neurosci Lett. 2015 Oct 21;607:97-101. doi: 10.1016/j.neulet.2015.09.025. Epub 2015 Sep 25.

9.

Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance.

Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, Winkler EA, Ramanathan A, Kanekiyo T, Bu G, Owens NC, Rege SV, Si G, Ahuja A, Zhu D, Miller CA, Schneider JA, Maeda M, Maeda T, Sugawara T, Ichida JK, Zlokovic BV.

Nat Neurosci. 2015 Jul;18(7):978-87. doi: 10.1038/nn.4025. Epub 2015 May 25.

10.

BIN1 is decreased in sporadic but not familial Alzheimer's disease or in aging.

Glennon EB, Whitehouse IJ, Miners JS, Kehoe PG, Love S, Kellett KA, Hooper NM.

PLoS One. 2013 Oct 21;8(10):e78806. doi: 10.1371/journal.pone.0078806. eCollection 2013.

11.

Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.

Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH.

Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.

12.

Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease.

Sagare AP, Bell RD, Zlokovic BV.

Cold Spring Harb Perspect Med. 2012 Oct 1;2(10). pii: a011452. doi: 10.1101/cshperspect.a011452. Review.

13.

Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities.

Sagare AP, Deane R, Zlokovic BV.

Pharmacol Ther. 2012 Oct;136(1):94-105. doi: 10.1016/j.pharmthera.2012.07.008. Epub 2012 Jul 20. Review.

14.

Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease.

Sagare AP, Bell RD, Zlokovic BV.

J Alzheimers Dis. 2013;33 Suppl 1:S87-100. Review.

15.

Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease.

Wilkinson K, El Khoury J.

Int J Alzheimers Dis. 2012;2012:489456. doi: 10.1155/2012/489456. Epub 2012 May 15.

16.

Is RAGE still a therapeutic target for Alzheimer's disease?

Deane RJ.

Future Med Chem. 2012 May;4(7):915-25. doi: 10.4155/fmc.12.51. Review.

17.

A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease.

Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV.

J Clin Invest. 2012 Apr;122(4):1377-92. doi: 10.1172/JCI58642. Epub 2012 Mar 12.

18.

Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease?

Li X, Buxbaum JN.

Mol Neurodegener. 2011 Nov 23;6:79. doi: 10.1186/1750-1326-6-79. Review.

19.

Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders.

Zlokovic BV.

Nat Rev Neurosci. 2011 Nov 3;12(12):723-38. doi: 10.1038/nrn3114. Review.

20.

RAGE: the beneficial and deleterious effects by diverse mechanisms of actions.

Han SH, Kim YH, Mook-Jung I.

Mol Cells. 2011 Feb;31(2):91-7. doi: 10.1007/s10059-011-0030-x. Epub 2011 Jan 18.

Supplemental Content

Support Center