Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 47

1.

Regulation of dopaminergic function: an [18F]-DOPA PET apomorphine challenge study in humans.

Jauhar S, Veronese M, Rogdaki M, Bloomfield M, Natesan S, Turkheimer F, Kapur S, Howes OD.

Transl Psychiatry. 2017 Feb 7;7(2):e1027. doi: 10.1038/tp.2016.270.

2.

Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis.

Rojas-Mayorquín AE, Padilla-Velarde E, Ortuño-Sahagún D.

Front Neurosci. 2016 Dec 15;10:565. doi: 10.3389/fnins.2016.00565. eCollection 2016. Review.

3.

Preventative treatment in an animal model of ADHD: Behavioral and biochemical effects of methylphenidate and its interactions with ovarian hormones in female rats.

Lukkes JL, Freund N, Thompson BS, Meda S, Andersen SL.

Eur Neuropsychopharmacol. 2016 Sep;26(9):1496-1506. doi: 10.1016/j.euroneuro.2016.06.003. Epub 2016 Jul 5.

4.

Brain lateralization and self-reported symptoms of ADHD in a population sample of adults: a dimensional approach.

Mohamed SM, Börger NA, Geuze RH, van der Meere JJ.

Front Psychol. 2015 Sep 22;6:1418. doi: 10.3389/fpsyg.2015.01418. eCollection 2015.

5.

A parietal biomarker for ADHD liability: as predicted by the distributed effects perspective model of ADHD.

Hale TS, Wiley JF, Smalley SL, Tung KL, Kaminsky O, McGough JJ, Jaini AM, Loo SK.

Front Psychiatry. 2015 May 7;6:63. doi: 10.3389/fpsyt.2015.00063. eCollection 2015.

6.

Improvement of learning and increase in dopamine level in the frontal cortex by methylphenidate in mice lacking dopamine transporter.

Takamatsu Y, Hagino Y, Sato A, Takahashi T, Nagasawa SY, Kubo Y, Mizuguchi M, Uhl GR, Sora I, Ikeda K.

Curr Mol Med. 2015;15(3):245-52.

7.

Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology.

McNamara RK, Vannest JJ, Valentine CJ.

World J Psychiatry. 2015 Mar 22;5(1):15-34. doi: 10.5498/wjp.v5.i1.15. Review.

8.

Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings.

Hale TS, Kane AM, Tung KL, Kaminsky O, McGough JJ, Hanada G, Loo SK.

Front Psychiatry. 2014 Jul 24;5:87. doi: 10.3389/fpsyt.2014.00087. eCollection 2014.

9.

Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study.

Hale TS, Kane AM, Kaminsky O, Tung KL, Wiley JF, McGough JJ, Loo SK, Kaplan JT.

Front Psychiatry. 2014 Jul 15;5:81. doi: 10.3389/fpsyt.2014.00081. eCollection 2014.

10.

A distributed effects perspective of dimensionally defined psychiatric disorders: and convergent versus core deficit effects in ADHD.

Hale TS.

Front Psychiatry. 2014 Jun 5;5:62. doi: 10.3389/fpsyt.2014.00062. eCollection 2014. Review.

11.

Sex-dependent changes in ADHD-like behaviors in juvenile rats following cortical dopamine depletion.

Freund N, MacGillivilray HT, Thompson BS, Lukkes JL, Stanis JJ, Brenhouse HC, Andersen SL.

Behav Brain Res. 2014 Aug 15;270:357-63. doi: 10.1016/j.bbr.2014.05.024. Epub 2014 May 23.

12.

ADHD, altered dopamine neurotransmission, and disrupted reinforcement processes: implications for smoking and nicotine dependence.

Kollins SH, Adcock RA.

Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jul 3;52:70-8. doi: 10.1016/j.pnpbp.2014.02.002. Epub 2014 Feb 18. Review.

13.

The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals.

Fox H, Sinha R.

Adv Pharmacol. 2014;69:217-65. doi: 10.1016/B978-0-12-420118-7.00006-8. Review.

14.

A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment.

del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, Chamberlain SR, Tait R, Izquierdo D, Regenthal R, Dowson J, Suckling J, Baron JC, Aigbirhio FI, Robbins TW, Sahakian BJ, Müller U.

Brain. 2013 Nov;136(Pt 11):3252-70. doi: 10.1093/brain/awt263.

15.

Amphetamine, past and present--a pharmacological and clinical perspective.

Heal DJ, Smith SL, Gosden J, Nutt DJ.

J Psychopharmacol. 2013 Jun;27(6):479-96. doi: 10.1177/0269881113482532. Epub 2013 Mar 28. Review.

16.

Striatal sensitivity during reward processing in attention-deficit/hyperactivity disorder.

Paloyelis Y, Mehta MA, Faraone SV, Asherson P, Kuntsi J.

J Am Acad Child Adolesc Psychiatry. 2012 Jul;51(7):722-732.e9. doi: 10.1016/j.jaac.2012.05.006. Epub 2012 Jun 5.

17.

Impact of size and delay on neural activity in the rat limbic corticostriatal system.

Roesch MR, Bryden DW.

Front Neurosci. 2011 Dec 7;5:130. doi: 10.3389/fnins.2011.00130. eCollection 2011.

18.

Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder.

Tomasi D, Volkow ND.

Biol Psychiatry. 2012 Mar 1;71(5):443-50. doi: 10.1016/j.biopsych.2011.11.003. Epub 2011 Dec 6.

19.

The role of neuromodulators in selective attention.

Noudoost B, Moore T.

Trends Cogn Sci. 2011 Dec;15(12):585-91. doi: 10.1016/j.tics.2011.10.006. Epub 2011 Nov 8. Review.

20.

Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists.

Fernando AB, Economidou D, Theobald DE, Zou MF, Newman AH, Spoelder M, Caprioli D, Moreno M, Hipólito L, Aspinall AT, Robbins TW, Dalley JW.

Psychopharmacology (Berl). 2012 Jan;219(2):341-52. doi: 10.1007/s00213-011-2408-z. Epub 2011 Jul 15.

Supplemental Content

Support Center