Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

Hegarty JP, Krzeminski J, Sharma AK, Guzman-Villanueva D, Weissig V, Stewart DB Sr.

Int J Nanomedicine. 2016 Aug 1;11:3607-19. doi: 10.2147/IJN.S109600.

2.

Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea.

Moon HW, Kim HN, Hur M, Shim HS, Kim H, Yun YM.

PLoS One. 2016 Aug 17;11(8):e0161139. doi: 10.1371/journal.pone.0161139.

3.

Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms.

Bandelj P, Blagus R, Briski F, Frlic O, Vergles Rataj A, Rupnik M, Ocepek M, Vengust M.

Vet Res. 2016 Mar 12;47:41. doi: 10.1186/s13567-016-0326-0.

4.

Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection.

Shaughnessy MK, Bobr A, Kuskowski MA, Johnston BD, Sadowsky MJ, Khoruts A, Johnson JR.

Appl Environ Microbiol. 2016 Apr 18;82(9):2686-92. doi: 10.1128/AEM.03888-15.

5.

Bacterial probiotics as an aid in the control of Clostridium difficile disease in neonatal pigs.

Arruda PH, Madson DM, Ramirez A, Rowe EW, Songer JG.

Can Vet J. 2016 Feb;57(2):183-8.

6.

Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth.

Weingarden AR, Dosa PI, DeWinter E, Steer CJ, Shaughnessy MK, Johnson JR, Khoruts A, Sadowsky MJ.

PLoS One. 2016 Jan 20;11(1):e0147210. doi: 10.1371/journal.pone.0147210.

7.

Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities.

Quesada-Gómez C, López-Ureña D, Chumbler N, Kroh HK, Castro-Peña C, Rodríguez C, Orozco-Aguilar J, González-Camacho S, Rucavado A, Guzmán-Verri C, Lawley TD, Lacy DB, Chaves-Olarte E.

Infect Immun. 2016 Jan 11;84(3):856-65. doi: 10.1128/IAI.01291-15.

8.

Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence.

Kumar N, Miyajima F, He M, Roberts P, Swale A, Ellison L, Pickard D, Smith G, Molyneux R, Dougan G, Parkhill J, Wren BW, Parry CM, Pirmohamed M, Lawley TD.

Clin Infect Dis. 2016 Mar 15;62(6):746-52. doi: 10.1093/cid/civ1031.

9.

An Update on Clostridium difficile Toxinotyping.

Rupnik M, Janezic S.

J Clin Microbiol. 2016 Jan;54(1):13-8. doi: 10.1128/JCM.02083-15. Review.

10.

Longitudinal study of Clostridium difficile shedding in raccoons on swine farms and conservation areas in Ontario, Canada.

Bondo KJ, Weese JS, Rouseau J, Jardine CM.

BMC Vet Res. 2015 Oct 7;11:254. doi: 10.1186/s12917-015-0563-x.

11.

Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus.

Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, Ma L, Bouchier C, Barbut F, Dupuy B.

Sci Rep. 2015 Oct 8;5:15023. doi: 10.1038/srep15023.

12.

Tracing the Spread of Clostridium difficile Ribotype 027 in Germany Based on Bacterial Genome Sequences.

Steglich M, Nitsche A, von Müller L, Herrmann M, Kohl TA, Niemann S, Nübel U.

PLoS One. 2015 Oct 7;10(10):e0139811. doi: 10.1371/journal.pone.0139811.

13.

Diversity and Evolution in the Genome of Clostridium difficile.

Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV.

Clin Microbiol Rev. 2015 Jul;28(3):721-41. doi: 10.1128/CMR.00127-14. Review.

14.

Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B.

Eckert C, Emirian A, Le Monnier A, Cathala L, De Montclos H, Goret J, Berger P, Petit A, De Chevigny A, Jean-Pierre H, Nebbad B, Camiade S, Meckenstock R, Lalande V, Marchandin H, Barbut F.

New Microbes New Infect. 2014 Nov 8;3:12-7. doi: 10.1016/j.nmni.2014.10.003.

15.

Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile.

Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, Paulick A, Anderson L, Kuijper EJ, Wilcox MH.

PLoS One. 2015 Feb 13;10(2):e0118150. doi: 10.1371/journal.pone.0118150.

16.

Exposure of neutralizing epitopes in the carboxyl-terminal domain of TcdB is altered by a proximal hypervariable region.

Larabee JL, Krumholz A, Hunt JJ, Lanis JM, Ballard JD.

J Biol Chem. 2015 Mar 13;290(11):6975-85. doi: 10.1074/jbc.M114.612184.

17.

DNA microarray-based PCR ribotyping of Clostridium difficile.

Schneeberg A, Ehricht R, Slickers P, Baier V, Neubauer H, Zimmermann S, Rabold D, Lübke-Becker A, Seyboldt C.

J Clin Microbiol. 2015 Feb;53(2):433-42. doi: 10.1128/JCM.02524-14.

18.

The complexity and diversity of the Pathogenicity Locus in Clostridium difficile clade 5.

Elliott B, Dingle KE, Didelot X, Crook DW, Riley TV.

Genome Biol Evol. 2014 Nov 8;6(12):3159-70. doi: 10.1093/gbe/evu248.

20.

Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region.

Janezic S, Indra A, Rattei T, Weinmaier T, Rupnik M.

PLoS One. 2014 Sep 15;9(9):e106545. doi: 10.1371/journal.pone.0106545.

Items per page

Supplemental Content

Support Center