Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn's Disease-Like Ileitis: What is the Right Model?

Cominelli F, Arseneau KO, Rodriguez-Palacios A, Pizarro TT.

Cell Mol Gastroenterol Hepatol. 2017 Mar 6;4(1):19-32. doi: 10.1016/j.jcmgh.2017.02.010. eCollection 2017 Jul. Review.

2.

Bayesian Machine Learning Techniques for revealing complex interactions among genetic and clinical factors in association with extra-intestinal Manifestations in IBD patients.

Menti E, Lanera C, Lorenzoni G, Giachino DF, Marchi M, Gregori D, Berchialla P; Piedmont Study Group on the Genetics of IBD.

AMIA Annu Symp Proc. 2017 Feb 10;2016:884-893. eCollection 2016.

3.

The RUNX complex: reaching beyond haematopoiesis into immunity.

Voon DC, Hor YT, Ito Y.

Immunology. 2015 Dec;146(4):523-36. doi: 10.1111/imm.12535. Epub 2015 Oct 25. Review.

4.

Genomic Scans of Zygotic Disequilibrium and Epistatic SNPs in HapMap Phase III Populations.

Hu XS, Hu Y.

PLoS One. 2015 Jun 30;10(6):e0131039. doi: 10.1371/journal.pone.0131039. eCollection 2015.

5.

Genetic studies of Crohn's disease: past, present and future.

Liu JZ, Anderson CA.

Best Pract Res Clin Gastroenterol. 2014 Jun;28(3):373-86. doi: 10.1016/j.bpg.2014.04.009. Epub 2014 May 6. Review.

6.

The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease.

Vanuytsel T, Vermeire S, Cleynen I.

Tissue Barriers. 2013 Dec 1;1(5):e27321. doi: 10.4161/tisb.27321. Epub 2013 Dec 10. Review.

7.

-449 C>G polymorphism of NFKB1 gene, coding nuclear factor-kappa-B, is associated with the susceptibility to ulcerative colitis.

Hayashi R, Tahara T, Yamaaki T, Saito T, Matsunaga K, Hayashi N, Fukumura A, Ozaki K, Nakamura M, Shiroeda H, Tsutsumi M, Shibata T, Arisawa T.

World J Gastroenterol. 2012 Dec 21;18(47):6981-6. doi: 10.3748/wjg.v18.i47.6981.

8.

Molecular-phylogenetic characterization of the microbiota in ulcerated and non-ulcerated regions in the patients with Crohn's disease.

Li Q, Wang C, Tang C, Li N, Li J.

PLoS One. 2012;7(4):e34939. doi: 10.1371/journal.pone.0034939. Epub 2012 Apr 18.

9.
10.

Genetic evidence supporting the association of protease and protease inhibitor genes with inflammatory bowel disease: a systematic review.

Cleynen I, Jüni P, Bekkering GE, Nüesch E, Mendes CT, Schmied S, Wyder S, Kellen E, Villiger PM, Rutgeerts P, Vermeire S, Lottaz D.

PLoS One. 2011;6(9):e24106. doi: 10.1371/journal.pone.0024106. Epub 2011 Sep 8. Review.

11.

Familial aggregation in inflammatory bowel disease: is it genes or environment?

Nunes T, Fiorino G, Danese S, Sans M.

World J Gastroenterol. 2011 Jun 14;17(22):2715-22. doi: 10.3748/wjg.v17.i22.2715. Review.

12.

SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis.

Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F.

Inflamm Bowel Dis. 2011 Dec;17(12):2566-84. doi: 10.1002/ibd.21638. Epub 2011 May 6. Review.

13.

Synthetic associations are unlikely to account for many common disease genome-wide association signals.

Anderson CA, Soranzo N, Zeggini E, Barrett JC.

PLoS Biol. 2011 Jan 18;9(1):e1000580. doi: 10.1371/journal.pbio.1000580. No abstract available.

14.

Toll-like receptors in inflammatory bowel diseases: a decade later.

Cario E.

Inflamm Bowel Dis. 2010 Sep;16(9):1583-97. doi: 10.1002/ibd.21282. Review.

15.

NOD2 polymorphisms in clinical phenotypes of common variable immunodeficiency disorders.

Packwood K, Drewe E, Staples E, Webster D, Witte T, Litzman J, Egner W, Sargur R, Sewell W, Lopez-Granados E, Seneviratne SL, Powell RJ, Ferry BL, Chapel HM.

Clin Exp Immunol. 2010 Sep;161(3):536-41. doi: 10.1111/j.1365-2249.2010.04216.x.

16.

Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.

Bleich A, Büchler G, Beckwith J, Petell LM, Affourtit JP, King BL, Shaffer DJ, Roopenian DC, Hedrich HJ, Sundberg JP, Leiter EH.

Inflamm Bowel Dis. 2010 May;16(5):765-75. doi: 10.1002/ibd.21146.

17.

Tumor necrosis factor receptor superfamily, member 1B haplotypes increase or decrease the risk of inflammatory bowel diseases in a New Zealand caucasian population.

Ferguson LR, Han DY, Huebner C, Petermann I, Barclay ML, Gearry RB, McCulloch A, Demmers PS.

Gastroenterol Res Pract. 2009;2009:591704. doi: 10.1155/2009/591704. Epub 2009 May 3.

18.

Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis.

Goyette P, Lefebvre C, Ng A, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Latiano A, Aumais G, Deslandres C, Jobin G, Annese V, Daly MJ, Xavier RJ, Rioux JD.

Mucosal Immunol. 2008 Mar;1(2):131-8. doi: 10.1038/mi.2007.15. Epub 2008 Jan 16.

19.

Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation.

Yan Y, Merlin D.

World J Gastroenterol. 2008 Oct 28;14(40):6115-21. Review.

20.

Meta-analysis of genome-wide linkage studies across autoimmune diseases.

Forabosco P, Bouzigon E, Ng MY, Hermanowski J, Fisher SA, Criswell LA, Lewis CM.

Eur J Hum Genet. 2009 Feb;17(2):236-43. doi: 10.1038/ejhg.2008.163. Epub 2008 Sep 10.

Supplemental Content

Support Center