Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay.

Toots M, Ustav M Jr, Männik A, Mumm K, Tämm K, Tamm T, Ustav E, Ustav M.

PLoS Pathog. 2017 Feb 9;13(2):e1006168. doi: 10.1371/journal.ppat.1006168.

2.

Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFNγ- and TNFα-Mediated Antiproliferative Effects and Necroptosis.

Ma W, Tummers B, van Esch EM, Goedemans R, Melief CJ, Meyers C, Boer JM, van der Burg SH.

Front Immunol. 2016 Nov 22;7:496.

3.

Novel recombinant papillomavirus genomes expressing selectable genes.

Van Doorslaer K, Porter S, McKinney C, Stepp WH, McBride AA.

Sci Rep. 2016 Nov 28;6:37782. doi: 10.1038/srep37782.

4.

Brd4 Activates Early Viral Transcription upon Human Papillomavirus 18 Infection of Primary Keratinocytes.

McKinney CC, Kim MJ, Chen D, McBride AA.

MBio. 2016 Nov 22;7(6). pii: e01644-16. doi: 10.1128/mBio.01644-16.

5.

Construction of a Transcription Map for Papillomaviruses using RACE, RNase Protection, and Primer Extension Assays.

Wang X, Zheng ZM.

Curr Protoc Microbiol. 2016 Feb 8;40:14B.6.1-29. doi: 10.1002/9780471729259.mc14b06s40.

6.
7.

Papillomavirus Infectious Pathways: A Comparison of Systems.

Biryukov J, Meyers C.

Viruses. 2015 Aug 4;7(8):4303-25. doi: 10.3390/v7082823. Review.

8.

The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation.

Tummers B, Goedemans R, Pelascini LP, Jordanova ES, van Esch EM, Meyers C, Melief CJ, Boer JM, van der Burg SH.

Nat Commun. 2015 Mar 13;6:6537. doi: 10.1038/ncomms7537.

9.
10.

Human papilloma virions in the laboratory.

Dunne EF, Markowitz LE, Taylor LD, Unger ER, Wheeler CM.

J Clin Virol. 2014 Oct;61(2):196-8. doi: 10.1016/j.jcv.2014.06.014. Review.

11.

Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

Ozbun MA, Patterson NA.

Curr Protoc Microbiol. 2014 Aug 1;34:14B.3.1-18. doi: 10.1002/9780471729259.mc14b03s34.

12.

CD40-mediated amplification of local immunity by epithelial cells is impaired by HPV.

Tummers B, Goedemans R, Jha V, Meyers C, Melief CJ, van der Burg SH, Boer JM.

J Invest Dermatol. 2014 Dec;134(12):2918-27. doi: 10.1038/jid.2014.262.

13.

Roles for human papillomavirus type 16 l1 cysteine residues 161, 229, and 379 in genome encapsidation and capsid stability.

Ryndock EJ, Conway MJ, Alam S, Gul S, Murad S, Christensen ND, Meyers C.

PLoS One. 2014 Jun 11;9(6):e99488. doi: 10.1371/journal.pone.0099488.

14.

Susceptibility of high-risk human papillomavirus type 16 to clinical disinfectants.

Meyers J, Ryndock E, Conway MJ, Meyers C, Robison R.

J Antimicrob Chemother. 2014 Jun;69(6):1546-50. doi: 10.1093/jac/dku006.

15.

Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6.

Lorenz LD, Rivera Cardona J, Lambert PF.

PLoS Pathog. 2013 Oct;9(10):e1003717. doi: 10.1371/journal.ppat.1003717.

16.

Differential dependence on host cell glycosaminoglycans for infection of epithelial cells by high-risk HPV types.

Cruz L, Meyers C.

PLoS One. 2013 Jul 4;8(7):e68379. doi: 10.1371/journal.pone.0068379.

17.

Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response.

Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, Jha V, Offringa R, van Ommen GJ, Melief CJ, Guardavaccaro D, Boer JM, van der Burg SH.

PLoS Pathog. 2013;9(5):e1003384. doi: 10.1371/journal.ppat.1003384.

18.

L2, the minor capsid protein of papillomavirus.

Wang JW, Roden RB.

Virology. 2013 Oct;445(1-2):175-86. doi: 10.1016/j.virol.2013.04.017. Review.

19.

The evolving field of human papillomavirus receptor research: a review of binding and entry.

Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, Schelhaas M, Kast WM.

J Virol. 2013 Jun;87(11):6062-72. doi: 10.1128/JVI.00330-13. Review.

20.

Quiescent innate response to infective filariae by human Langerhans cells suggests a strategy of immune evasion.

Boyd A, Bennuru S, Wang Y, Sanprasert V, Law M, Chaussabel D, Nutman TB, Semnani RT.

Infect Immun. 2013 May;81(5):1420-9. doi: 10.1128/IAI.01301-12.

Supplemental Content

Support Center