Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Simultaneous targeting of MyD88 and Nur77 as an effective approach for the treatment of inflammatory diseases.

Uzma S, Baig MS.

Drug Des Devel Ther. 2016 May 4;10:1557-72. doi: 10.2147/DDDT.S103393. eCollection 2016.

2.

Toll/Interleukin-1 Receptor Domain Derived from TcpC (TIR-TcpC) Ameliorates Experimental Autoimmune Arthritis by Down-modulating Th17 Cell Response.

Pasi S, Kant R, Surolia A.

J Biol Chem. 2016 Jun 3;291(23):12358-69. doi: 10.1074/jbc.M116.722801. Epub 2016 Mar 28.

PMID:
27022030
3.

Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen.

Olson MA, Lee MS, Kissner TL, Alam S, Waugh DS, Saikh KU.

Sci Rep. 2015 Sep 18;5:14246. doi: 10.1038/srep14246.

4.

TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators.

Zoccal KF, Bitencourt Cda S, Paula-Silva FW, Sorgi CA, de Castro Figueiredo Bordon K, Arantes EC, Faccioli LH.

PLoS One. 2014 Feb 7;9(2):e88174. doi: 10.1371/journal.pone.0088174. eCollection 2014.

5.

Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells.

Loiarro M, Volpe E, Ruggiero V, Gallo G, Furlan R, Maiorino C, Battistini L, Sette C.

J Biol Chem. 2013 Oct 18;288(42):30210-22. doi: 10.1074/jbc.M113.490946. Epub 2013 Sep 9.

6.

Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans.

von Bernuth H, Picard C, Puel A, Casanova JL.

Eur J Immunol. 2012 Dec;42(12):3126-35. doi: 10.1002/eji.201242683. Review.

7.

Identification and function of myeloid differentiation factor 88 (MyD88) in Litopenaeus vannamei.

Zhang S, Li CZ, Yan H, Qiu W, Chen YG, Wang PH, Weng SP, He JG.

PLoS One. 2012;7(10):e47038. doi: 10.1371/journal.pone.0047038. Epub 2012 Oct 12.

8.

Toll/interleukin-1 receptor domain dimers as the platform for activation and enhanced inhibition of Toll-like receptor signaling.

Fekonja O, Benčina M, Jerala R.

J Biol Chem. 2012 Sep 7;287(37):30993-1002. doi: 10.1074/jbc.M112.376186. Epub 2012 Jul 24.

9.

Characterization analysis and polymorphism detection of the porcine Myd88 gene.

Li X, Liu H, Yang S, Tang Z, Ma Y, Chu M, Li K.

Genet Mol Biol. 2009 Apr;32(2):295-300. doi: 10.1590/S1415-47572009000200015. Epub 2009 Jun 1.

10.

Targeting TLR/IL-1R signalling in human diseases.

Loiarro M, Ruggiero V, Sette C.

Mediators Inflamm. 2010;2010:674363. doi: 10.1155/2010/674363. Epub 2010 Apr 8. Review.

11.

Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases.

Loiarro M, Gallo G, Fantò N, De Santis R, Carminati P, Ruggiero V, Sette C.

J Biol Chem. 2009 Oct 9;284(41):28093-103. doi: 10.1074/jbc.M109.004465. Epub 2009 Aug 13.

12.

TLR4/MyD88/PI3K interactions regulate TLR4 signaling.

Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, Vogel SN.

J Leukoc Biol. 2009 Jun;85(6):966-77. doi: 10.1189/jlb.1208763. Epub 2009 Mar 16.

13.

Fas (CD95) induces macrophage proinflammatory chemokine production via a MyD88-dependent, caspase-independent pathway.

Altemeier WA, Zhu X, Berrington WR, Harlan JM, Liles WC.

J Leukoc Biol. 2007 Sep;82(3):721-8. Epub 2007 Jun 18.

14.

The apoptotic signaling pathway activated by Toll-like receptor-2.

Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A.

EMBO J. 2000 Jul 3;19(13):3325-36.

15.

Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity.

Bonizzi G, Piette J, Schoonbroodt S, Greimers R, Havard L, Merville MP, Bours V.

Mol Cell Biol. 1999 Mar;19(3):1950-60.

16.

A family of human receptors structurally related to Drosophila Toll.

Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF.

Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):588-93.

Supplemental Content

Support Center