Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Prediction of Certain Well-Characterized Domains of Known Functions within the PE and PPE Proteins of Mycobacteria.

Sultana R, Tanneeru K, Kumar AB, Guruprasad L.

PLoS One. 2016 Feb 18;11(2):e0146786. doi: 10.1371/journal.pone.0146786.

2.

The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases.

Crouch LI, Labourel A, Walton PH, Davies GJ, Gilbert HJ.

J Biol Chem. 2016 Apr 1;291(14):7439-49. doi: 10.1074/jbc.M115.702365.

3.

Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis.

Rui Y, Anderson CT.

Plant Physiol. 2016 Mar;170(3):1398-419. doi: 10.1104/pp.15.01066.

4.

Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules.

Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG.

Biotechnol Biofuels. 2015 Dec 21;8:220. doi: 10.1186/s13068-015-0402-0.

5.

Immunological Approaches to Biomass Characterization and Utilization.

Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG.

Front Bioeng Biotechnol. 2015 Oct 28;3:173. doi: 10.3389/fbioe.2015.00173. Review.

6.

Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker.

Petkun S, Rozman Grinberg I, Lamed R, Jindou S, Burstein T, Yaniv O, Shoham Y, Shimon LJ, Bayer EA, Frolow F.

PeerJ. 2015 Sep 15;3:e1126. doi: 10.7717/peerj.1126.

7.

Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis.

Peciulyte A, Karlström K, Larsson PT, Olsson L.

Biotechnol Biofuels. 2015 Apr 1;8:56. doi: 10.1186/s13068-015-0236-9.

8.

Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.

Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A.

Plant Physiol. 2015 May;168(1):3-17. doi: 10.1104/pp.114.254664.

9.

Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and β-1,3-1,4-Glucans through Distinct Mechanisms.

Venditto I, Najmudin S, Luís AS, Ferreira LM, Sakka K, Knox JP, Gilbert HJ, Fontes CM.

J Biol Chem. 2015 Apr 24;290(17):10572-86. doi: 10.1074/jbc.M115.637827.

10.

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes.

Lim S, Seo J, Choi H, Yoon D, Nam J, Kim H, Cho S, Chang J.

Asian-Australas J Anim Sci. 2013 Aug;26(8):1144-51. doi: 10.5713/ajas.2013.13219.

11.

Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4.

Sehar U, Mehmood MA, Hussain K, Nawaz S, Nadeem S, Siddique MH, Nadeem H, Gull M, Ahmad N, Sohail I, Gill SS, Majeed S.

Bioinformation. 2013 Nov 11;9(18):901-7. doi: 10.6026/97320630009901.

13.
14.

Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?

Ferdinand PH, Borne R, Trotter V, Pagès S, Tardif C, Fierobe HP, Perret S.

PLoS One. 2013 Jul 25;8(7):e69360. doi: 10.1371/journal.pone.0069360.

15.

Structure of a family 3a carbohydrate-binding module from the cellulosomal scaffoldin CipA of Clostridium thermocellum with flanking linkers: implications for cellulosome structure.

Yaniv O, Morag E, Borovok I, Bayer EA, Lamed R, Frolow F, Shimon LJ.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):733-7. doi: 10.1107/S174430911301614X.

16.

Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure.

Currie MA, Cameron K, Dias FM, Spencer HL, Bayer EA, Fontes CM, Smith SP, Jia Z.

J Biol Chem. 2013 Mar 15;288(11):7978-85. doi: 10.1074/jbc.M112.408757.

17.

Functional characterization and mutation analysis of family 11, Carbohydrate-Binding Module (CtCBM11) of cellulosomal bifunctional cellulase from Clostridium thermocellum.

Bharali S, Purama RK, Majumder A, Fontes CM, Goyal A.

Indian J Microbiol. 2007 Jun;47(2):109-18. doi: 10.1007/s12088-007-0023-9.

18.

The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.

Chebli Y, Kaneda M, Zerzour R, Geitmann A.

Plant Physiol. 2012 Dec;160(4):1940-55. doi: 10.1104/pp.112.199729.

19.

Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae.

Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP.

Plant Physiol. 2012 Nov;160(3):1551-66. doi: 10.1104/pp.112.203661.

20.

Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin.

Georgelis N, Yennawar NH, Cosgrove DJ.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14830-5. doi: 10.1073/pnas.1213200109.

Items per page

Supplemental Content

Support Center