Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

An invertebrate smooth muscle with striated muscle myosin filaments.

Sulbarán G, Alamo L, Pinto A, Márquez G, Méndez F, Padrón R, Craig R.

Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):E5660-8. doi: 10.1073/pnas.1513439112.

2.

Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.

Brizendine RK, Alcala DB, Carter MS, Haldeman BD, Facemyer KC, Baker JE, Cremo CR.

Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11235-40. doi: 10.1073/pnas.1510241112.

3.

Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading.

Murtada SI, Lewin S, Arner A, Humphrey JD.

Biomech Model Mechanobiol. 2016 Jun;15(3):579-92. doi: 10.1007/s10237-015-0711-z.

PMID:
26220455
4.
5.

The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.

Haldeman BD, Brizendine RK, Facemyer KC, Baker JE, Cremo CR.

J Biol Chem. 2014 Jul 25;289(30):21055-70.

6.

Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy.

Rivard M, Couture CA, Miri AK, Laliberté M, Bertrand-Grenier A, Mongeau L, Légaré F.

Biomed Opt Express. 2013 Sep 9;4(10):2078-86. doi: 10.1364/BOE.4.002078.

7.

Myosin filaments in smooth muscle cells do not have a constant length.

Liu JC, Rottler J, Wang L, Zhang J, Pascoe CD, Lan B, Norris BA, Herrera AM, Paré PD, Seow CY.

J Physiol. 2013 Dec 1;591(23):5867-78. doi: 10.1113/jphysiol.2013.264168.

8.

Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.

Woodhead JL, Zhao FQ, Craig R.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8561-6. doi: 10.1073/pnas.1218462110.

9.

Self-organization of myosin II in reconstituted actomyosin bundles.

Stachowiak MR, McCall PM, Thoresen T, Balcioglu HE, Kasiewicz L, Gardel ML, O'Shaughnessy B.

Biophys J. 2012 Sep 19;103(6):1265-74. doi: 10.1016/j.bpj.2012.08.028.

10.

A multi-scale approach to airway hyperresponsiveness: from molecule to organ.

Lauzon AM, Bates JH, Donovan G, Tawhai M, Sneyd J, Sanderson MJ.

Front Physiol. 2012 Jun 11;3:191. doi: 10.3389/fphys.2012.00191.

11.

Identification and characterization of Myosin from rat testicular peritubular myoid cells.

Fernández D, Bertoldi MV, Gómez L, Morales A, Callegari E, Lopez LA.

Biol Reprod. 2008 Dec;79(6):1210-8. doi: 10.1095/biolreprod.107.066472.

12.

Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.

Hooper SL, Hobbs KH, Thuma JB.

Prog Neurobiol. 2008 Oct;86(2):72-127. doi: 10.1016/j.pneurobio.2008.06.004. Review.

13.

Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells.

Jung HS, Komatsu S, Ikebe M, Craig R.

Mol Biol Cell. 2008 Aug;19(8):3234-42. doi: 10.1091/mbc.E08-02-0206.

14.

Biophysical basis for airway hyperresponsiveness.

An SS, Fredberg JJ.

Can J Physiol Pharmacol. 2007 Jul;85(7):700-14. Review.

15.

Regulatory and catalytic domain dynamics of smooth muscle myosin filaments.

Li HC, Song L, Salzameda B, Cremo CR, Fajer PG.

Biochemistry. 2006 May 16;45(19):6212-21.

16.

Bronchospasm and its biophysical basis in airway smooth muscle.

Fredberg JJ.

Respir Res. 2004 Feb 26;5:2. Review.

18.

Purification of native myosin filaments from muscle.

Hidalgo C, Padrón R, Horowitz R, Zhao FQ, Craig R.

Biophys J. 2001 Nov;81(5):2817-26.

20.

Assembly of smooth muscle myosin by the 38k protein, a homologue of a subunit of pre-mRNA splicing factor-2.

Okagaki T, Nakamura A, Suzuki T, Ohmi K, Kohama K.

J Cell Biol. 2000 Feb 21;148(4):653-63.

Items per page

Supplemental Content

Support Center