Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function.

Gupta SC, Ravikrishnan A, Liu J, Mao Z, Pavuluri R, Hillman BG, Gandhi PJ, Stairs DJ, Li M, Ugale RR, Monaghan DT, Dravid SM.

Sci Rep. 2016 Dec 6;6:38321. doi: 10.1038/srep38321.

2.

Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits.

Tatti R, Haley MS, Swanson OK, Tselha T, Maffei A.

Biol Psychiatry. 2017 May 15;81(10):821-831. doi: 10.1016/j.biopsych.2016.09.017. Epub 2016 Sep 29. Review.

PMID:
27865453
3.

Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain.

Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO.

J Neuroinflammation. 2016 Nov 8;13(1):286.

4.

N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development.

Bagasrawala I, Zecevic N, Radonjić NV.

Front Neurosci. 2016 Sep 30;10:435. eCollection 2016.

5.

Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes.

Bergman O, Ben-Shachar D.

Can J Psychiatry. 2016 Aug;61(8):457-69. doi: 10.1177/0706743716648290.

6.

Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain.

Akgül G, McBain CJ.

J Physiol. 2016 Oct 1;594(19):5471-90. doi: 10.1113/JP271764. Epub 2016 May 12.

PMID:
26918438
7.

The involvement of N-methyl-D-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia.

Ju P, Cui D.

Acta Biochim Biophys Sin (Shanghai). 2016 Mar;48(3):209-19. doi: 10.1093/abbs/gmv135. Epub 2016 Feb 1. Review.

8.

Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.

Yang GJ, Murray JD, Wang XJ, Glahn DC, Pearlson GD, Repovs G, Krystal JH, Anticevic A.

Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E219-28. doi: 10.1073/pnas.1508436113. Epub 2015 Dec 23.

9.

Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia.

Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, Datta D, Lewis DA.

Schizophr Bull. 2016 Mar;42(2):396-405. doi: 10.1093/schbul/sbv139. Epub 2015 Sep 30.

10.

Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment.

Ellaithy A, Younkin J, González-Maeso J, Logothetis DE.

Trends Neurosci. 2015 Aug;38(8):506-16. doi: 10.1016/j.tins.2015.06.002. Epub 2015 Jul 4. Review.

11.

Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis.

Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan-Vaughan D.

Front Behav Neurosci. 2015 May 20;9:117. doi: 10.3389/fnbeh.2015.00117. eCollection 2015.

12.

Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex.

McClatchy DB, Savas JN, Martínez-Bartolomé S, Park SK, Maher P, Powell SB, Yates JR 3rd.

Mol Psychiatry. 2016 Feb;21(2):205-15. doi: 10.1038/mp.2015.41. Epub 2015 Apr 14.

13.

Specific Roles of NMDA Receptor Subunits in Mental Disorders.

Yamamoto H, Hagino Y, Kasai S, Ikeda K.

Curr Mol Med. 2015;15(3):193-205.

14.

Pregnenolone sulfate normalizes schizophrenia-like behaviors in dopamine transporter knockout mice through the AKT/GSK3β pathway.

Wong P, Sze Y, Chang CC, Lee J, Zhang X.

Transl Psychiatry. 2015 Mar 17;5:e528. doi: 10.1038/tp.2015.21.

15.

A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia.

Matsuno H, Ohi K, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Yano-Umeda S, Saneyoshi T, Takeda M, Hayashi Y.

PLoS One. 2015 Mar 13;10(3):e0116319. doi: 10.1371/journal.pone.0116319. eCollection 2015.

16.
17.

Glutamate Networks Implicate Cognitive Impairments in Schizophrenia: Genome-Wide Association Studies of 52 Cognitive Phenotypes.

Ohi K, Hashimoto R, Ikeda M, Yamamori H, Yasuda Y, Fujimoto M, Umeda-Yano S, Fukunaga M, Fujino H, Watanabe Y, Iwase M, Kazui H, Iwata N, Weinberger DR, Takeda M.

Schizophr Bull. 2015 Jul;41(4):909-18. doi: 10.1093/schbul/sbu171. Epub 2014 Dec 22.

18.

Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia.

Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG.

Mol Psychiatry. 2015 Sep;20(9):1091-100. doi: 10.1038/mp.2014.115. Epub 2014 Oct 21.

19.

The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies.

Hu W, MacDonald ML, Elswick DE, Sweet RA.

Ann N Y Acad Sci. 2015 Mar;1338:38-57. doi: 10.1111/nyas.12547. Epub 2014 Oct 14. Review.

20.

mGluR5 positive allosteric modulation and its effects on MK-801 induced set-shifting impairments in a rat operant delayed matching/non-matching-to-sample task.

LaCrosse AL, Burrows BT, Angulo RM, Conrad PR, Himes SM, Mathews N, Wegner SA, Taylor SB, Olive MF.

Psychopharmacology (Berl). 2015 Jan;232(1):251-8. doi: 10.1007/s00213-014-3653-8. Epub 2014 Jun 29.

Supplemental Content

Support Center