Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 212

1.

Growth Rate as a Direct Regulator of the Start Network to Set Cell Size.

Aldea M, Jenkins K, Csikász-Nagy A.

Front Cell Dev Biol. 2017 May 26;5:57. doi: 10.3389/fcell.2017.00057. eCollection 2017. Review.

2.

Translate to divide: сontrol of the cell cycle by protein synthesis.

Polymenis M, Aramayo R.

Microb Cell. 2015 Mar 20;2(4):94-104. doi: 10.15698/mic2015.04.198. Review.

3.

Regulation of the Candida albicans Hypha-Inducing Transcription Factor Ume6 by the CDK1 Cyclins Cln3 and Hgc1.

Mendelsohn S, Pinsky M, Weissman Z, Kornitzer D.

mSphere. 2017 Mar 8;2(2). pii: e00248-16. doi: 10.1128/mSphere.00248-16. eCollection 2017 Mar-Apr.

4.

Multiplexed, Tethered Particle Microscopy for Studies of DNA-Enzyme Dynamics.

Ucuncuoglu S, Schneider DA, Weeks ER, Dunlap D, Finzi L.

Methods Enzymol. 2017;582:415-435. doi: 10.1016/bs.mie.2016.08.008. Epub 2016 Oct 24.

PMID:
28062044
5.

Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans.

Chaillot J, Cook MA, Corbeil J, Sellam A.

G3 (Bethesda). 2017 Feb 9;7(2):355-360. doi: 10.1534/g3.116.037986.

6.

Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae.

Kono K, Al-Zain A, Schroeder L, Nakanishi M, Ikui AE.

Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6910-5. doi: 10.1073/pnas.1523824113. Epub 2016 Jun 7.

7.

The non-homologous end-joining pathway of S. cerevisiae works effectively in G1-phase cells, and religates cognate ends correctly and non-randomly.

Gao S, Honey S, Futcher B, Grollman AP.

DNA Repair (Amst). 2016 Jun;42:1-10. doi: 10.1016/j.dnarep.2016.03.013. Epub 2016 Apr 14.

8.

Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate.

Palumbo P, Vanoni M, Cusimano V, Busti S, Marano F, Manes C, Alberghina L.

Nat Commun. 2016 Apr 20;7:11372. doi: 10.1038/ncomms11372.

9.

Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size.

Schmoller KM, Turner JJ, Kõivomägi M, Skotheim JM.

Nature. 2015 Oct 8;526(7572):268-72. doi: 10.1038/nature14908. Epub 2015 Sep 21.

10.

Experimental testing of a new integrated model of the budding yeast Start transition.

Adames NR, Schuck PL, Chen KC, Murali TM, Tyson JJ, Peccoud J.

Mol Biol Cell. 2015 Nov 5;26(22):3966-84. doi: 10.1091/mbc.E15-06-0358. Epub 2015 Aug 26.

11.

Cell-Size Control.

Amodeo AA, Skotheim JM.

Cold Spring Harb Perspect Biol. 2016 Apr 1;8(4):a019083. doi: 10.1101/cshperspect.a019083. Review.

12.

Reliable cell cycle commitment in budding yeast is ensured by signal integration.

Liu X, Wang X, Yang X, Liu S, Jiang L, Qu Y, Hu L, Ouyang Q, Tang C.

Elife. 2015 Jan 14;4. doi: 10.7554/eLife.03977.

13.

Protein acetylation and acetyl coenzyme a metabolism in budding yeast.

Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A.

Eukaryot Cell. 2014 Dec;13(12):1472-83. doi: 10.1128/EC.00189-14. Epub 2014 Oct 17. Review.

14.

Recovery from stress - a cell cycle perspective.

Radmaneshfar E, Thiel M.

J Comput Interdiscip Sci. 2012 Oct 1;3(1-2):33-44.

15.

Topology and control of the cell-cycle-regulated transcriptional circuitry.

Haase SB, Wittenberg C.

Genetics. 2014 Jan;196(1):65-90. doi: 10.1534/genetics.113.152595. Review.

16.

Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state.

Miles S, Li L, Davison J, Breeden LL.

PLoS Genet. 2013 Oct;9(10):e1003854. doi: 10.1371/journal.pgen.1003854. Epub 2013 Oct 31.

17.

From START to FINISH: the influence of osmotic stress on the cell cycle.

Radmaneshfar E, Kaloriti D, Gustin MC, Gow NA, Brown AJ, Grebogi C, Romano MC, Thiel M.

PLoS One. 2013 Jul 10;8(7):e68067. doi: 10.1371/journal.pone.0068067. Print 2013.

18.

Regulating DNA replication in eukarya.

Siddiqui K, On KF, Diffley JF.

Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9). pii: a012930. doi: 10.1101/cshperspect.a012930. Review.

19.

Msb1 interacts with Cdc42, Boi1, and Boi2 and may coordinate Cdc42 and Rho1 functions during early stage of bud development in budding yeast.

Liao Y, He F, Gong T, Bi E, Gao XD.

PLoS One. 2013 Jun 13;8(6):e66321. doi: 10.1371/journal.pone.0066321. Print 2013.

20.

Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae.

Shi L, Tu BP.

Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7318-23. doi: 10.1073/pnas.1302490110. Epub 2013 Apr 15.

Supplemental Content

Support Center