Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.

Bowman EA, Kelly WG.

Nucleus. 2014 May-Jun;5(3):224-36. doi: 10.4161/nucl.29347. Epub 2014 May 30. Review.

2.

Physical and genetic associations of the Irc20 ubiquitin ligase with Cdc48 and SUMO.

Richardson A, Gardner RG, Prelich G.

PLoS One. 2013 Oct 14;8(10):e76424. doi: 10.1371/journal.pone.0076424. eCollection 2013. Erratum in: PLoS One. 2013;8(11). doi:10.1371/annotation/72c05c58-2c2b-4d3b-a9b4-20a46dba9c05.

3.

RNA polymerase II C-terminal domain: Tethering transcription to transcript and template.

Corden JL.

Chem Rev. 2013 Nov 13;113(11):8423-55. doi: 10.1021/cr400158h. Epub 2013 Sep 16. Review. No abstract available.

4.

Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae.

Chang JS, Winston F.

G3 (Bethesda). 2013 Mar;3(3):573-83. doi: 10.1534/g3.112.005389. Epub 2013 Mar 1.

5.

Regulation of histone gene expression in budding yeast.

Eriksson PR, Ganguli D, Nagarajavel V, Clark DJ.

Genetics. 2012 May;191(1):7-20. doi: 10.1534/genetics.112.140145. Review.

6.

Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo.

Kaplan CD, Jin H, Zhang IL, Belyanin A.

PLoS Genet. 2012;8(4):e1002627. doi: 10.1371/journal.pgen.1002627. Epub 2012 Apr 12.

7.

Chromatin and transcription in yeast.

Rando OJ, Winston F.

Genetics. 2012 Feb;190(2):351-87. doi: 10.1534/genetics.111.132266. Review.

8.

Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?

Bartkowiak B, Greenleaf AL.

Transcription. 2011 May;2(3):115-119.

9.

An investigation of a role for U2 snRNP spliceosomal components in regulating transcription.

McKay SL, Johnson TL.

PLoS One. 2011 Jan 24;6(1):e16077. doi: 10.1371/journal.pone.0016077.

10.

Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.

García A, Rosonina E, Manley JL, Calvo O.

Mol Cell Biol. 2010 Nov;30(21):5180-93. doi: 10.1128/MCB.00819-10. Epub 2010 Sep 7.

11.

Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae.

Lau NC, Mulder KW, Brenkman AB, Mohammed S, van den Broek NJ, Heck AJ, Timmers HT.

PLoS One. 2010 Apr 8;5(4):e9864. doi: 10.1371/journal.pone.0009864.

12.

Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome.

van Werven FJ, van Bakel H, van Teeffelen HA, Altelaar AF, Koerkamp MG, Heck AJ, Holstege FC, Timmers HT.

Genes Dev. 2008 Sep 1;22(17):2359-69. doi: 10.1101/gad.1682308. Epub 2008 Aug 14.

13.

Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes.

Chu Y, Simic R, Warner MH, Arndt KM, Prelich G.

EMBO J. 2007 Nov 14;26(22):4646-56. Epub 2007 Oct 18.

14.

Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae.

Dobi KC, Winston F.

Mol Cell Biol. 2007 Aug;27(15):5575-86. Epub 2007 May 25.

15.
16.

The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.

Chu Y, Sutton A, Sternglanz R, Prelich G.

Mol Cell Biol. 2006 Apr;26(8):3029-38.

17.

A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression.

Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS.

Genetics. 2006 Apr;172(4):2169-84. Epub 2006 Feb 1.

19.

Genetic analysis connects SLX5 and SLX8 to the SUMO pathway in Saccharomyces cerevisiae.

Wang Z, Jones GM, Prelich G.

Genetics. 2006 Mar;172(3):1499-509. Epub 2005 Dec 30.

20.

Supplemental Content

Support Center