Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 9


Examining the condition-specific antisense transcription in S. cerevisiae and S. paradoxus.

Swamy KB, Lin CH, Yen MR, Wang CY, Wang D.

BMC Genomics. 2014 Jun 25;15:521. doi: 10.1186/1471-2164-15-521.


The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.

Salinas F, Cubillos FA, Soto D, Garcia V, Bergström A, Warringer J, Ganga MA, Louis EJ, Liti G, Martinez C.

PLoS One. 2012;7(11):e49640. doi: 10.1371/journal.pone.0049640. Epub 2012 Nov 21.


A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.

Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG.

PLoS One. 2012;7(9):e44278. doi: 10.1371/journal.pone.0044278. Epub 2012 Sep 6.


The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast.

Rodriguez-Colman MJ, Reverter-Branchat G, Sorolla MA, Tamarit J, Ros J, Cabiscol E.

J Biol Chem. 2010 Nov 19;285(47):37092-101. doi: 10.1074/jbc.M110.174763. Epub 2010 Sep 16.


SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae.

Jin C, Barrientos A, Epstein CB, Butow RA, Tzagoloff A.

FEBS Lett. 2007 Dec 11;581(29):5658-63. Epub 2007 Nov 20.


Isolation and characterization of the Saccharomyces cerevisiae XPT1 gene encoding xanthine phosphoribosyl transferase.

Guetsova ML, Crother TR, Taylor MW, Daignan-Fornier B.

J Bacteriol. 1999 May;181(9):2984-6.


Yeast carbon catabolite repression.

Gancedo JM.

Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61. Review.

Supplemental Content

Support Center