Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.

Jedrzejczak WW, Kochanek K, Skarzynski H.

PLoS One. 2018 Feb 16;13(2):e0192930. doi: 10.1371/journal.pone.0192930. eCollection 2018.

2.

Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays.

Lewis JD.

J Assoc Res Otolaryngol. 2018 Feb;19(1):53-65. doi: 10.1007/s10162-017-0645-5. Epub 2017 Nov 13.

PMID:
29134475
3.

Characterizing spontaneous otoacoustic emissions across the human lifespan.

Abdala C, Luo P, Shera CA.

J Acoust Soc Am. 2017 Mar;141(3):1874. doi: 10.1121/1.4977192.

4.

Compensating for ear-canal acoustics when measuring otoacoustic emissions.

Charaziak KK, Shera CA.

J Acoust Soc Am. 2017 Jan;141(1):515. doi: 10.1121/1.4973618.

5.

Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.

Dewey JB, Dhar S.

J Assoc Res Otolaryngol. 2017 Feb;18(1):89-110. doi: 10.1007/s10162-016-0588-2. Epub 2016 Sep 28.

6.

Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

Stamate MC, Todor N, Cosgarea M.

Clujul Med. 2015;88(4):500-12. doi: 10.15386/cjmed-467. Epub 2015 Nov 15.

7.

Low-frequency sound affects active micromechanics in the human inner ear.

Kugler K, Wiegrebe L, Grothe B, Kössl M, Gürkov R, Krause E, Drexl M.

R Soc Open Sci. 2014 Oct 1;1(2):140166. doi: 10.1098/rsos.140166. eCollection 2014 Oct.

8.

Associations between prenatal and recent postnatal methylmercury exposure and auditory function at age 19 years in the Seychelles Child Development Study.

Orlando MS, Dziorny AC, Harrington D, Love T, Shamlaye CF, Watson GE, van Wijngaarden E, Davidson PW, Myers GJ.

Neurotoxicol Teratol. 2014 Nov-Dec;46:68-76.

9.

An active oscillator model describes the statistics of spontaneous otoacoustic emissions.

Fruth F, Jülicher F, Lindner B.

Biophys J. 2014 Aug 19;107(4):815-24. doi: 10.1016/j.bpj.2014.06.047.

10.

All that jazz coming out of my ears.

Martin P.

Biophys J. 2014 Aug 19;107(4):800-2. doi: 10.1016/j.bpj.2014.07.011. No abstract available.

11.

Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.

Cheatham MA, Goodyear RJ, Homma K, Legan PK, Korchagina J, Naskar S, Siegel JH, Dallos P, Zheng J, Richardson GP.

J Neurosci. 2014 Jul 30;34(31):10325-38. doi: 10.1523/JNEUROSCI.1256-14.2014.

12.

Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.

Baiduc RR, Lee J, Dhar S.

J Acoust Soc Am. 2014 Jan;135(1):300-14. doi: 10.1121/1.4840775.

13.

Estrogenic modulation of auditory processing: a vertebrate comparison.

Caras ML.

Front Neuroendocrinol. 2013 Oct;34(4):285-99. doi: 10.1016/j.yfrne.2013.07.006. Epub 2013 Jul 31. Review.

14.

High-multiple spontaneous otoacoustic emissions confirm theory of local tuned oscillators.

Braun M.

Springerplus. 2013 Mar 27;2(1):135. doi: 10.1186/2193-1801-2-135. Print 2013 Dec.

15.

Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth.

Keefe DH.

J Acoust Soc Am. 2012 Nov;132(5):3319-50. doi: 10.1121/1.4757734. Erratum in: J Acoust Soc Am. 2014 Jan;135:545.

16.

Relationships between otoacoustic emissions and a proxy measure of cochlear length derived from the auditory brainstem response.

McFadden D, Garcia-Sierra A, Hsieh MD, Maloney MM, Champlin CA, Pasanen EG.

Hear Res. 2012 Jul;289(1-2):63-73. doi: 10.1016/j.heares.2012.04.010. Epub 2012 Apr 21.

17.

The effect of static ear canal pressure on human spontaneous otoacoustic emissions: spectral width as a measure of the intra-cochlear oscillation amplitude.

van Dijk P, Maat B, de Kleine E.

J Assoc Res Otolaryngol. 2011 Feb;12(1):13-28. doi: 10.1007/s10162-010-0241-4.

18.

Mechanics of the frog ear.

Van Dijk P, Mason MJ, Schoffelen RL, Narins PM, Meenderink SW.

Hear Res. 2011 Mar;273(1-2):46-58. doi: 10.1016/j.heares.2010.02.004. Epub 2010 Feb 10. Review.

19.

Long-term stability of spontaneous otoacoustic emissions.

Burns EM.

J Acoust Soc Am. 2009 May;125(5):3166-76. doi: 10.1121/1.3097768.

20.

Masculinization of the mammalian cochlea.

McFadden D.

Hear Res. 2009 Jun;252(1-2):37-48. doi: 10.1016/j.heares.2009.01.002. Epub 2009 Jan 20. Review.

Supplemental Content

Support Center