Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 13

2.

Optic nerve sheath fenestration using a Raman-shifted alexandrite laser.

Kozub J, Shen JH, Joos KM, Prasad R, Hutson MS.

Lasers Surg Med. 2016 Mar;48(3):270-80. doi: 10.1002/lsm.22456. Epub 2015 Dec 14.

3.

Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.

Kozub JA, Shen JH, Joos KM, Prasad R, Hutson MS.

J Biomed Opt. 2015 Oct;20(10):105004. doi: 10.1117/1.JBO.20.10.105004.

4.

Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form.

Kawasaki T, Fujioka J, Imai T, Torigoe K, Tsukiyama K.

Lasers Med Sci. 2014 Sep;29(5):1701-7. doi: 10.1007/s10103-014-1577-5. Epub 2014 Apr 24.

5.

Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues.

Qian Z, Mordovanakis A, Schoenly JE, Covarrubias A, Feng Y, Lilge L, Marjoribanks RS.

Biomed Opt Express. 2013 Dec 13;5(1):208-22. doi: 10.1364/BOE.5.000208. eCollection 2013 Dec 13.

6.

Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range.

Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS.

Biomed Opt Express. 2011 Apr 19;2(5):1275-81. doi: 10.1364/BOE.2.001275.

7.

Development of an intravascular laser treatment with an infrared free electron laser. Selective removal of cholesterol ester in carotid atheromatous plaques.

Nakajima Y, Iwatsuki K, Ishii K, Fujinaka T, Awazu K, Yoshimine T.

Interv Neuroradiol. 2004 Mar 30;10 Suppl 1:67-9. Epub 2008 Jun 9.

8.

In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin.

Wilmink GJ, Opalenik SR, Beckham JT, Mackanos MA, Nanney LB, Contag CH, Davidson JM, Jansen ED.

J Biomed Opt. 2008 Sep-Oct;13(5):054066. doi: 10.1117/1.2992594.

9.

Kinetics of a collagen-like polypeptide fragmentation after mid-IR free-electron laser ablation.

Zavalin A, Hachey DL, Sundaramoorthy M, Banerjee S, Morgan S, Feldman L, Tolk N, Piston DW.

Biophys J. 2008 Aug;95(3):1371-81. doi: 10.1529/biophysj.107.122002. Epub 2008 Apr 25.

10.

Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea.

Xiao Y, Guo M, Zhang P, Shanmugam G, Polavarapu PL, Hutson MS.

Biophys J. 2008 Feb 15;94(4):1359-66. Epub 2007 Oct 12.

11.

Wavelength-dependent collagen fragmentation during mid-IR laser ablation.

Xiao Y, Guo M, Parker K, Hutson MS.

Biophys J. 2006 Aug 15;91(4):1424-32. Epub 2006 May 19.

12.

Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation.

Venugopalan V, Nishioka NS, Mikić BB.

Biophys J. 1996 Jun;70(6):2981-93. Erratum in: Biophys J 1996 Dec;71(6):3530.

13.

The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.

Venugopalan V, Nishioka NS, Mikić BB.

Biophys J. 1995 Oct;69(4):1259-71.

Supplemental Content

Support Center