Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

Sharick JT, Favreau PF, Gillette AA, Sdao SM, Merrins MJ, Skala MC.

Sci Rep. 2018 Apr 3;8(1):5456. doi: 10.1038/s41598-018-23691-x.

2.

Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo.

Yaseen MA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S.

Biomed Opt Express. 2017 Apr 3;8(5):2368-2385. doi: 10.1364/BOE.8.002368. eCollection 2017 May 1.

3.

Investigating mitochondrial redox state using NADH and NADPH autofluorescence.

Blacker TS, Duchen MR.

Free Radic Biol Med. 2016 Nov;100:53-65. doi: 10.1016/j.freeradbiomed.2016.08.010. Epub 2016 Aug 9. Review.

4.

Probing metabolic states of differentiating stem cells using two-photon FLIM.

Meleshina AV, Dudenkova VV, Shirmanova MV, Shcheslavskiy VI, Becker W, Bystrova AS, Cherkasova EI, Zagaynova EV.

Sci Rep. 2016 Feb 25;6:21853. doi: 10.1038/srep21853.

5.

Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.

Chakraborty S, Nian FS, Tsai JW, Karmenyan A, Chiou A.

Sci Rep. 2016 Jan 13;6:19145. doi: 10.1038/srep19145.

6.

Molecular probes for fluorescence lifetime imaging.

Sarder P, Maji D, Achilefu S.

Bioconjug Chem. 2015 Jun 17;26(6):963-74. doi: 10.1021/acs.bioconjchem.5b00167. Epub 2015 May 22. Review.

7.

Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.

Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR.

Nat Commun. 2014 May 29;5:3936. doi: 10.1038/ncomms4936.

8.

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA.

Biomed Opt Express. 2013 Feb 1;4(2):307-21. doi: 10.1364/BOE.4.000307. Epub 2013 Jan 22.

9.

Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.

Welsher K, Sherlock SP, Dai H.

Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8. doi: 10.1073/pnas.1014501108. Epub 2011 May 16.

10.

Fluorescence lifetime measurements and biological imaging.

Berezin MY, Achilefu S.

Chem Rev. 2010 May 12;110(5):2641-84. doi: 10.1021/cr900343z. Review. No abstract available.

11.

Selective detection of NADPH oxidase in polymorphonuclear cells by means of NAD(P)H-based fluorescence lifetime imaging.

Niesner R, Narang P, Spiecker H, Andresen V, Gericke KH, Gunzer M.

J Biophys. 2008;2008:602639. doi: 10.1155/2008/602639. Epub 2008 Nov 16.

12.

Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence.

Chen J, Toptygin D, Brand L, King J.

Biochemistry. 2008 Oct 7;47(40):10705-21. doi: 10.1021/bi800499k. Epub 2008 Sep 17.

13.

Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.

Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW.

Proc Natl Acad Sci U S A. 2000 May 9;97(10):5203-7.

14.

Nanosecond time-resolved circular polarization of fluorescence: study of NADH bound to horse liver alcohol dehydrogenase.

Schauerte JA, Schlyer BD, Steel DG, Gafni A.

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):569-73.

Supplemental Content

Support Center