Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase.

Mi R, Yang X, Huang Y, Cheng L, Lu K, Han X, Chen Z.

Parasit Vectors. 2017 May 31;10(1):273. doi: 10.1186/s13071-017-2200-y.

2.

SF2312 is a natural phosphonate inhibitor of enolase.

Leonard PG, Satani N, Maxwell D, Lin YH, Hammoudi N, Peng Z, Pisaneschi F, Link TM, Lee GR 4th, Sun D, Prasad BAB, Di Francesco ME, Czako B, Asara JM, Wang YA, Bornmann W, DePinho RA, Muller FL.

Nat Chem Biol. 2016 Dec;12(12):1053-1058. doi: 10.1038/nchembio.2195. Epub 2016 Oct 10.

3.

Octameric structure of Staphylococcus aureus enolase in complex with phosphoenolpyruvate.

Wu Y, Wang C, Lin S, Wu M, Han L, Tian C, Zhang X, Zang J.

Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2457-70. doi: 10.1107/S1399004715018830. Epub 2015 Nov 26.

4.

Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family.

Odokonyero D, Sakai A, Patskovsky Y, Malashkevich VN, Fedorov AA, Bonanno JB, Fedorov EV, Toro R, Agarwal R, Wang C, Ozerova ND, Yew WS, Sauder JM, Swaminathan S, Burley SK, Almo SC, Glasner ME.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8535-40. doi: 10.1073/pnas.1318703111. Epub 2014 May 28.

5.

Divergent evolution of ligand binding in the o-succinylbenzoate synthase family.

Odokonyero D, Ragumani S, Lopez MS, Bonanno JB, Ozerova ND, Woodard DR, Machala BW, Swaminathan S, Burley SK, Almo SC, Glasner ME.

Biochemistry. 2013 Oct 22;52(42):7512-21. doi: 10.1021/bi401176d. Epub 2013 Oct 9.

6.

Anticancer agents that counteract tumor glycolysis.

Granchi C, Minutolo F.

ChemMedChem. 2012 Aug;7(8):1318-50. doi: 10.1002/cmdc.201200176. Epub 2012 Jun 8. Review.

7.
8.

Structure of mandelate racemase with bound intermediate analogues benzohydroxamate and cupferron.

Lietzan AD, Nagar M, Pellmann EA, Bourque JR, Bearne SL, St Maurice M.

Biochemistry. 2012 Feb 14;51(6):1160-70. doi: 10.1021/bi2018514. Epub 2012 Feb 3.

9.

Predicting flexible loop regions that interact with ligands: the challenge of accurate scoring.

Danielson ML, Lill MA.

Proteins. 2012 Jan;80(1):246-60. doi: 10.1002/prot.23199. Epub 2011 Nov 9.

10.

The catalytic Mn2+ sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations.

Carmieli R, Larsen TM, Reed GH, Zein S, Neese F, Goldfarb D.

J Am Chem Soc. 2007 Apr 11;129(14):4240-52. Epub 2007 Mar 17.

12.

Fluoride inhibition of enolase: crystal structure and thermodynamics.

Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L.

Biochemistry. 2006 Jan 24;45(3):793-800.

13.

Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit.

Sims PA, Menefee AL, Larsen TM, Mansoorabadi SO, Reed GH.

J Mol Biol. 2006 Jan 20;355(3):422-31. Epub 2005 Nov 8.

14.

Three metal ions at the active site of the Tetrahymena group I ribozyme.

Shan So, Yoshida A, Sun S, Piccirilli JA, Herschlag D.

Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12299-304.

15.

Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase.

Hasson MS, Schlichting I, Moulai J, Taylor K, Barrett W, Kenyon GL, Babbitt PC, Gerlt JA, Petsko GA, Ringe D.

Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10396-401.

Supplemental Content

Support Center