Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33

1.

Chronic-Stress-Induced Behavioral Changes Associated with Subregion-Selective Serotonin Cell Death in the Dorsal Raphe.

Natarajan R, Forrester L, Chiaia NL, Yamamoto BK.

J Neurosci. 2017 Jun 28;37(26):6214-6223. doi: 10.1523/JNEUROSCI.3781-16.2017. Epub 2017 May 25.

PMID:
28546314
2.

The chronic mild stress (CMS) model of depression: History, evaluation and usage.

Willner P.

Neurobiol Stress. 2016 Aug 24;6:78-93. doi: 10.1016/j.ynstr.2016.08.002. eCollection 2017 Feb. Review.

3.

Chronic Kappa opioid receptor activation modulates NR2B: Implication in treatment resistant depression.

Dogra S, Kumar A, Umrao D, Sahasrabuddhe AA, Yadav PN.

Sci Rep. 2016 Sep 16;6:33401. doi: 10.1038/srep33401.

4.

Antidepressant Effects of (+)-MK-801 and (-)-MK-801 in the Social Defeat Stress Model.

Yang B, Ren Q, Ma M, Chen QX, Hashimoto K.

Int J Neuropsychopharmacol. 2016 Dec 30;19(12). pii: pyw080. doi: 10.1093/ijnp/pyw080. Print 2016 Dec.

5.

Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders.

de Sousa RT, Loch AA, Carvalho AF, Brunoni AR, Haddad MR, Henter ID, Zarate CA, Machado-Vieira R.

Neuropsychopharmacology. 2017 Mar;42(4):787-800. doi: 10.1038/npp.2016.149. Epub 2016 Aug 11. Review.

PMID:
27510426
6.

The Effect of Chronic Mild Stress and Imipramine on the Markers of Oxidative Stress and Antioxidant System in Rat Liver.

Duda W, Curzytek K, Kubera M, Iciek M, Kowalczyk-Pachel D, Bilska-Wilkosz A, Lorenc-Koci E, Leśkiewicz M, Basta-Kaim A, Budziszewska B, Regulska M, Ślusarczyk J, Gruca P, Papp M, Maes M, Lasoń W, Antkiewicz-Michaluk L.

Neurotox Res. 2016 Aug;30(2):173-84. doi: 10.1007/s12640-016-9614-8. Epub 2016 Mar 10.

7.

Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.

Poleszak E, Stasiuk W, Szopa A, Wyska E, Serefko A, Oniszczuk A, Wośko S, Świąder K, Wlaź P.

Metab Brain Dis. 2016 Aug;31(4):803-14. doi: 10.1007/s11011-016-9810-5. Epub 2016 Feb 29.

8.

New targets for rapid antidepressant action.

Machado-Vieira R, Henter ID, Zarate CA Jr.

Prog Neurobiol. 2017 May;152:21-37. doi: 10.1016/j.pneurobio.2015.12.001. Epub 2015 Dec 23. Review.

PMID:
26724279
9.

Timosaponin derivative YY-23 acts as a non-competitive NMDA receptor antagonist and exerts a rapid antidepressant-like effect in mice.

Zhang Q, Guo F, Fu ZW, Zhang B, Huang CG, Li Y.

Acta Pharmacol Sin. 2016 Feb;37(2):166-76. doi: 10.1038/aps.2015.111. Epub 2015 Dec 21.

10.

Zinc in the Glutamatergic Theory of Depression.

Mlyniec K.

Curr Neuropharmacol. 2015;13(4):505-13. Review.

11.

A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder.

Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, Mao X, Rodriguez CI, Oquendo MA, Suckow RF, Cooper TB, Keilp JG, Shungu DC, Mann JJ.

Mol Psychiatry. 2016 Mar;21(3):320-7. doi: 10.1038/mp.2015.83. Epub 2015 Aug 18.

12.

Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: An in vivo electrophysiological study on monoaminergic and glutamatergic neurons.

El Iskandrani KS, Oosterhof CA, El Mansari M, Blier P.

J Psychopharmacol. 2015 Jul;29(7):792-801. doi: 10.1177/0269881115573809. Epub 2015 Mar 10.

13.

Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η.

Workman ER, Haddick PC, Bush K, Dilly GA, Niere F, Zemelman BV, Raab-Graham KF.

Mol Psychiatry. 2015 Mar;20(3):298-310. doi: 10.1038/mp.2014.165. Epub 2015 Jan 6.

14.

Etiological classification of depression based on the enzymes of tryptophan metabolism.

Fukuda K.

BMC Psychiatry. 2014 Dec 24;14:372. doi: 10.1186/s12888-014-0372-y.

15.

Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders?

Sanacora G, Schatzberg AF.

Neuropsychopharmacology. 2015 Jan;40(2):259-67. doi: 10.1038/npp.2014.261. Epub 2014 Sep 26. Review. Erratum in: Neuropsychopharmacology. 2015 Apr;40(5):1307.

16.

Mechanisms underlying the antidepressant response and treatment resistance.

Levinstein MR, Samuels BA.

Front Behav Neurosci. 2014 Jun 27;8:208. doi: 10.3389/fnbeh.2014.00208. eCollection 2014. Review.

17.

Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists.

Pozzi L, Pollak Dorocic I, Wang X, Carlén M, Meletis K.

PLoS One. 2014 Jan 16;9(1):e83879. doi: 10.1371/journal.pone.0083879. eCollection 2014. Erratum in: PLoS One. 2014;9(2):e91486. Dorocic, Iskra Pollak [corrected to Pollak Dorocic, Iskra].

18.

Reduced levels of NR1 and NR2A with depression-like behavior in different brain regions in prenatally stressed juvenile offspring.

Sun H, Guan L, Zhu Z, Li H.

PLoS One. 2013 Nov 20;8(11):e81775. doi: 10.1371/journal.pone.0081775. eCollection 2013.

19.

NMDA Receptor Antagonists for Treatment of Depression.

Ates-Alagoz Z, Adejare A.

Pharmaceuticals (Basel). 2013 Apr 3;6(4):480-99. doi: 10.3390/ph6040480.

20.

NMDA receptors and the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice.

Freitas AE, Moretti M, Budni J, Balen GO, Fernandes SC, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Rodrigues AL.

J Med Food. 2013 Nov;16(11):1030-8. doi: 10.1089/jmf.2012.0276.

Supplemental Content

Support Center