Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Competition between microtubule-associated proteins directs motor transport.

Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney KM.

Nat Commun. 2018 Apr 16;9(1):1487. doi: 10.1038/s41467-018-03909-2.

2.

Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy.

Kimura T, Sharma G, Ishiguro K, Hisanaga SI.

Front Neurosci. 2018 Feb 6;12:44. doi: 10.3389/fnins.2018.00044. eCollection 2018. Review.

3.

An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons.

Boselli M, Lee BH, Robert J, Prado MA, Min SW, Cheng C, Silva MC, Seong C, Elsasser S, Hatle KM, Gahman TC, Gygi SP, Haggarty SJ, Gan L, King RW, Finley D.

J Biol Chem. 2017 Nov 24;292(47):19209-19225. doi: 10.1074/jbc.M117.815126. Epub 2017 Sep 26.

PMID:
28972160
4.

Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau.

Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M.

Nat Commun. 2017 Aug 17;8(1):275. doi: 10.1038/s41467-017-00480-0.

5.

Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer's disease.

Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F, Louis C, Di Polo A.

Mol Neurodegener. 2017 Aug 3;12(1):58. doi: 10.1186/s13024-017-0199-3.

6.

An acetylation-phosphorylation switch that regulates tau aggregation propensity and function.

Carlomagno Y, Chung DC, Yue M, Castanedes-Casey M, Madden BJ, Dunmore J, Tong J, DeTure M, Dickson DW, Petrucelli L, Cook C.

J Biol Chem. 2017 Sep 15;292(37):15277-15286. doi: 10.1074/jbc.M117.794602. Epub 2017 Jul 31.

7.

Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies.

Henderson MX, Chung CH, Riddle DM, Zhang B, Gathagan RJ, Seeholzer SH, Trojanowski JQ, Lee VMY.

J Neurosci. 2017 Jun 14;37(24):5870-5884. doi: 10.1523/JNEUROSCI.2705-16.2017. Epub 2017 May 18.

8.

Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein.

Nishikawa H, Hatakeyama M.

Toxins (Basel). 2017 Apr 13;9(4). pii: E136. doi: 10.3390/toxins9040136. Review.

9.

Roles of tau protein in health and disease.

Guo T, Noble W, Hanger DP.

Acta Neuropathol. 2017 May;133(5):665-704. doi: 10.1007/s00401-017-1707-9. Epub 2017 Apr 6. Review.

10.

Regulation of Cell Polarity by PAR-1/MARK Kinase.

Wu Y, Griffin EE.

Curr Top Dev Biol. 2017;123:365-397. doi: 10.1016/bs.ctdb.2016.11.001. Epub 2016 Dec 5. Review.

11.

Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

Barber KR, Tanquary J, Bush K, Shaw A, Woodson M, Sherman M, Wairkar YP.

PLoS Genet. 2017 Feb 21;13(2):e1006621. doi: 10.1371/journal.pgen.1006621. eCollection 2017 Feb. Erratum in: PLoS Genet. 2017 May 31;13(5):e1006822.

12.

Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b.

Nishikawa H, Hayashi T, Arisaka F, Senda T, Hatakeyama M.

Sci Rep. 2016 Jul 22;6:30031. doi: 10.1038/srep30031.

13.

Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport.

Tiernan CT, Combs B, Cox K, Morfini G, Brady ST, Counts SE, Kanaan NM.

Exp Neurol. 2016 Sep;283(Pt A):318-29. doi: 10.1016/j.expneurol.2016.06.030. Epub 2016 Jun 30.

14.

Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans.

Tang NH, Chisholm AD.

F1000Res. 2016 Apr 27;5. pii: F1000 Faculty Rev-764. doi: 10.12688/f1000research.8197.1. eCollection 2016. Review.

15.

Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor.

Sack JS, Gao M, Kiefer SE, Myers JE Jr, Newitt JA, Wu S, Yan C.

Acta Crystallogr F Struct Biol Commun. 2016 Feb;72(Pt 2):129-34. doi: 10.1107/S2053230X15024747. Epub 2016 Jan 22.

16.

Region-specific dendritic simplification induced by Aβ, mediated by tau via dysregulation of microtubule dynamics: a mechanistic distinct event from other neurodegenerative processes.

Golovyashkina N, Penazzi L, Ballatore C, Smith AB 3rd, Bakota L, Brandt R.

Mol Neurodegener. 2015 Nov 5;10:60. doi: 10.1186/s13024-015-0049-0.

17.

Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins.

Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK.

Cytoskeleton (Hoboken). 2015 Jul;72(7):305-39. doi: 10.1002/cm.21226. Epub 2015 Aug 22. Review.

18.

TTBK2: a tau protein kinase beyond tau phosphorylation.

Liao JC, Yang TT, Weng RR, Kuo CT, Chang CW.

Biomed Res Int. 2015;2015:575170. doi: 10.1155/2015/575170. Epub 2015 Apr 9. Review.

19.

Cell-based Models To Investigate Tau Aggregation.

Lim S, Haque MM, Kim D, Kim DJ, Kim YK.

Comput Struct Biotechnol J. 2014 Oct 2;12(20-21):7-13. doi: 10.1016/j.csbj.2014.09.011. eCollection 2014 Nov. Review.

20.

Environmental factors in the development and progression of late-onset Alzheimer's disease.

Wainaina MN, Chen Z, Zhong C.

Neurosci Bull. 2014 Apr;30(2):253-70. doi: 10.1007/s12264-013-1425-9. Epub 2014 Mar 24. Review.

Supplemental Content

Support Center