Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

Roles and relevance of mast cells in infection and vaccination.

Fang Y, Xiang Z.

J Biomed Res. 2016 Jul;30(4):253-63. doi: 10.7555/JBR.30.20150038. Review.

2.

The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.

Sun J, Siroy A, Lokareddy RK, Speer A, Doornbos KS, Cingolani G, Niederweis M.

Nat Struct Mol Biol. 2015 Sep;22(9):672-8. doi: 10.1038/nsmb.3064.

3.

Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae.

Becker A, Kannan TR, Taylor AB, Pakhomova ON, Zhang Y, Somarajan SR, Galaleldeen A, Holloway SP, Baseman JB, Hart PJ.

Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5165-70. doi: 10.1073/pnas.1420308112.

4.

Cholera toxin B: one subunit with many pharmaceutical applications.

Baldauf KJ, Royal JM, Hamorsky KT, Matoba N.

Toxins (Basel). 2015 Mar 20;7(3):974-96. doi: 10.3390/toxins7030974. Review.

5.

Recombinant toxin-coregulated pilus A (TcpA) as a candidate subunit cholera vaccine.

Kiaie S, Abtahi H, Mosayebi G, Alikhani M, Pakzad I.

Iran J Microbiol. 2014 Apr;6(2):68-73.

6.

The molecular basis for control of ETEC enterotoxin expression in response to environment and host.

Haycocks JR, Sharma P, Stringer AM, Wade JT, Grainger DC.

PLoS Pathog. 2015 Jan 8;11(1):e1004605. doi: 10.1371/journal.ppat.1004605.

7.
8.

Co- and post-translocation roles for HSP90 in cholera Intoxication.

Burress H, Taylor M, Banerjee T, Tatulian SA, Teter K.

J Biol Chem. 2014 Nov 28;289(48):33644-54. doi: 10.1074/jbc.M114.609800.

9.

Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin.

Taylor M, Burress H, Banerjee T, Ray S, Curtis D, Tatulian SA, Teter K.

PLoS Pathog. 2014 Feb 6;10(2):e1003925. doi: 10.1371/journal.ppat.1003925.

10.

IcmQ in the Type 4b secretion system contains an NAD+ binding domain.

Farelli JD, Gumbart JC, Akey IV, Hempstead A, Amyot W, Head JF, McKnight CJ, Isberg RR, Akey CW.

Structure. 2013 Aug 6;21(8):1361-73. doi: 10.1016/j.str.2013.05.017.

11.

Retrograde trafficking of ABâ‚… toxins: mechanisms to therapeutics.

Mukhopadhyay S, Linstedt AD.

J Mol Med (Berl). 2013 Oct;91(10):1131-41. doi: 10.1007/s00109-013-1048-7. Review.

12.

Lateral membrane diffusion modulated by a minimal actin cortex.

Heinemann F, Vogel SK, Schwille P.

Biophys J. 2013 Apr 2;104(7):1465-75. doi: 10.1016/j.bpj.2013.02.042. Erratum in: Biophys J. 2013 May 7;104(9):2110.

13.

Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera.

Price GA, McFann K, Holmes RK.

PLoS One. 2013;8(2):e57269. doi: 10.1371/journal.pone.0057269.

14.

Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties.

Hajishengallis G, Connell TD.

Vet Immunol Immunopathol. 2013 Mar 15;152(1-2):68-77. doi: 10.1016/j.vetimm.2012.09.034. Review.

16.

The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology.

Guerriero CJ, Brodsky JL.

Physiol Rev. 2012 Apr;92(2):537-76. doi: 10.1152/physrev.00027.2011. Review.

17.

Beta-strand interfaces of non-dimeric protein oligomers are characterized by scattered charged residue patterns.

Feverati G, Achoch M, Zrimi J, Vuillon L, Lesieur C.

PLoS One. 2012;7(4):e32558. doi: 10.1371/journal.pone.0032558.

18.

Identification of host cell factors required for intoxication through use of modified cholera toxin.

Guimaraes CP, Carette JE, Varadarajan M, Antos J, Popp MW, Spooner E, Brummelkamp TR, Ploegh HL.

J Cell Biol. 2011 Nov 28;195(5):751-64. doi: 10.1083/jcb.201108103.

19.

Different types of cell death induced by enterotoxins.

Lin CF, Chen CL, Huang WC, Cheng YL, Hsieh CY, Wang CY, Hong MY.

Toxins (Basel). 2010 Aug;2(8):2158-76. doi: 10.3390/toxins2082158. Review.

20.
Items per page

Supplemental Content

Support Center