Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Shaping Substrate Selectivity in a Broad-Spectrum Metallo-β-Lactamase.

González LJ, Stival C, Puzzolo JL, Moreno DM, Vila AJ.

Antimicrob Agents Chemother. 2018 Mar 27;62(4). pii: e02079-17. doi: 10.1128/AAC.02079-17. Print 2018 Apr.

PMID:
29358299
2.

Crystal structure and kinetic analysis of the class B3 di-zinc metallo-β-lactamase LRA-12 from an Alaskan soil metagenome.

Rodríguez MM, Herman R, Ghiglione B, Kerff F, D'Amico González G, Bouillenne F, Galleni M, Handelsman J, Charlier P, Gutkind G, Sauvage E, Power P.

PLoS One. 2017 Jul 27;12(7):e0182043. doi: 10.1371/journal.pone.0182043. eCollection 2017.

3.

Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes.

Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK.

Int J Mol Sci. 2017 Mar 30;18(4). pii: E250. doi: 10.3390/ijms18040250. Review.

4.

Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

Khairy H, Meinert C, Wübbeler JH, Poehlein A, Daniel R, Voigt B, Riedel K, Steinbüchel A.

PLoS One. 2016 Dec 15;11(12):e0167539. doi: 10.1371/journal.pone.0167539. eCollection 2016.

5.

Use of ferrous iron by metallo-β-lactamases.

Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J.

J Inorg Biochem. 2016 Oct;163:185-193. doi: 10.1016/j.jinorgbio.2016.07.013. Epub 2016 Jul 26.

6.

Interaction of Avibactam with Class B Metallo-β-Lactamases.

Abboud MI, Damblon C, Brem J, Smargiasso N, Mercuri P, Gilbert B, Rydzik AM, Claridge TD, Schofield CJ, Frère JM.

Antimicrob Agents Chemother. 2016 Sep 23;60(10):5655-62. doi: 10.1128/AAC.00897-16. Print 2016 Oct.

7.

The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase.

Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GC, Damblon C, Redfield C, Matagne A.

J Biol Chem. 2016 Jul 29;291(31):16124-37. doi: 10.1074/jbc.M116.719005. Epub 2016 May 27.

8.

Cephalosporins inhibit human metallo β-lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo.

Lee SY, Brem J, Pettinati I, Claridge TD, Gileadi O, Schofield CJ, McHugh PJ.

Chem Commun (Camb). 2016 May 10;52(40):6727-30. doi: 10.1039/c6cc00529b.

9.

Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis.

Aitha M, Al-Adbul-Wahid S, Tierney DL, Crowder MW.

Medchemcomm. 2016 Jan 1;7(1):194-201. Epub 2016 Jan 4.

10.

The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.

Erbilgin O, Sutter M, Kerfeld CA.

PLoS Biol. 2016 Mar 9;14(3):e1002399. doi: 10.1371/journal.pbio.1002399. eCollection 2016 Mar.

11.

Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems.

Bottoni C, Perilli M, Marcoccia F, Piccirilli A, Pellegrini C, Colapietro M, Sabatini A, Celenza G, Kerff F, Amicosante G, Galleni M, Mercuri PS.

Antimicrob Agents Chemother. 2016 Apr 22;60(5):3123-6. doi: 10.1128/AAC.01703-15. Print 2016 May.

12.

The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins.

Pettinati I, Brem J, Lee SY, McHugh PJ, Schofield CJ.

Trends Biochem Sci. 2016 Apr;41(4):338-355. doi: 10.1016/j.tibs.2015.12.007. Epub 2016 Jan 21. Review.

13.
14.

Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers.

Brem J, van Berkel SS, Zollman D, Lee SY, Gileadi O, McHugh PJ, Walsh TR, McDonough MA, Schofield CJ.

Antimicrob Agents Chemother. 2015 Oct 19;60(1):142-50. doi: 10.1128/AAC.01335-15. Print 2016 Jan.

15.

B1-Metallo-β-Lactamases: Where Do We Stand?

Mojica MF, Bonomo RA, Fast W.

Curr Drug Targets. 2016;17(9):1029-50. Review.

16.

Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.

LaCuran AE, Pegg KM, Liu EM, Bethel CR, Ai N, Welsh WJ, Bonomo RA, Oelschlaeger P.

Antimicrob Agents Chemother. 2015 Dec;59(12):7299-307. doi: 10.1128/AAC.01651-15. Epub 2015 Sep 14.

17.

Draft Genome Sequence of Parabacteroides goldsteinii with Putative Novel Metallo-β-Lactamases Isolated from a Blood Culture from a Human Patient.

Krogh TJ, Agergaard CN, Møller-Jensen J, Justesen US.

Genome Announc. 2015 Aug 20;3(4). pii: e00937-15. doi: 10.1128/genomeA.00937-15.

18.

Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance.

Jeon JH, Lee JH, Lee JJ, Park KS, Karim AM, Lee CR, Jeong BC, Lee SH.

Int J Mol Sci. 2015 Apr 29;16(5):9654-92. doi: 10.3390/ijms16059654. Review.

19.

Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of fatty acid ethanolamide biosynthesis by bile acids.

Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, Garau G.

Structure. 2015 Mar 3;23(3):598-604. doi: 10.1016/j.str.2014.12.018. Epub 2015 Feb 12.

20.

Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy.

Pettinati I, Brem J, McDonough MA, Schofield CJ.

Hum Mol Genet. 2015 May 1;24(9):2458-69. doi: 10.1093/hmg/ddv007. Epub 2015 Jan 16.

Supplemental Content

Support Center