Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27


Chinchilla middle ear transmission matrix model and middle-ear flexibility.

Ravicz ME, Rosowski JJ.

J Acoust Soc Am. 2017 May;141(5):3274. doi: 10.1121/1.4982925.


Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF.

J Acoust Soc Am. 2017 Jan;141(1):499. doi: 10.1121/1.4974146.


Middle-Ear Sound Transmission Under Normal, Damaged, Repaired, and Reconstructed Conditions.

Dong W, Tian Y, Gao X, Jung TT.

Otol Neurotol. 2017 Apr;38(4):577-584. doi: 10.1097/MAO.0000000000001330.


Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.

Motallebzadeh H, Maftoon N, Pitaro J, Funnell WR, Daniel SJ.

J Assoc Res Otolaryngol. 2017 Feb;18(1):25-48. doi: 10.1007/s10162-016-0587-3. Epub 2016 Oct 7.


Motion of tympanic membrane in guinea pig otitis media model measured by scanning laser Doppler vibrometry.

Wang X, Guan X, Pineda M, Gan RZ.

Hear Res. 2016 Sep;339:184-94. doi: 10.1016/j.heares.2016.07.015. Epub 2016 Aug 1.


Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.

Razavi P, Ravicz ME, Dobrev I, Cheng JT, Furlong C, Rosowski JJ.

Hear Res. 2016 Oct;340:15-24. doi: 10.1016/j.heares.2016.01.019. Epub 2016 Feb 12.


Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.

Khaleghi M, Furlong C, Ravicz M, Cheng JT, Rosowski JJ.

J Biomed Opt. 2015 May;20(5):051028. doi: 10.1117/1.JBO.20.5.051028.


Sound pressure distribution within natural and artificial human ear canals: forward stimulation.

Ravicz ME, Tao Cheng J, Rosowski JJ.

J Acoust Soc Am. 2014 Dec;136(6):3132. doi: 10.1121/1.4898420.


Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.

Zhang X, Guan X, Nakmali D, Palan V, Pineda M, Gan RZ.

J Assoc Res Otolaryngol. 2014 Dec;15(6):867-81. doi: 10.1007/s10162-014-0482-8. Epub 2014 Aug 9.


Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity.

Maftoon N, Funnell WR, Daniel SJ, Decraemer WF.

J Assoc Res Otolaryngol. 2013 Aug;14(4):467-81. doi: 10.1007/s10162-013-0389-9. Epub 2013 Apr 27.


Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.

Cheng JT, Hamade M, Merchant SN, Rosowski JJ, Harrington E, Furlong C.

J Acoust Soc Am. 2013 Feb;133(2):918-37. doi: 10.1121/1.4773263.


Békésy's contributions to our present understanding of sound conduction to the inner ear.

Puria S, Rosowski JJ.

Hear Res. 2012 Nov;293(1-2):21-30. doi: 10.1016/j.heares.2012.05.004. Epub 2012 May 19. Review.


Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.

Huang S, Dong W, Olson ES.

J Assoc Res Otolaryngol. 2012 Aug;13(4):461-71. doi: 10.1007/s10162-012-0326-3. Epub 2012 Apr 24.


Reverse transmission along the ossicular chain in gerbil.

Dong W, Decraemer WF, Olson ES.

J Assoc Res Otolaryngol. 2012 Aug;13(4):447-59. doi: 10.1007/s10162-012-0320-9. Epub 2012 Mar 31.


New data on the motion of the normal and reconstructed tympanic membrane.

Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C.

Otol Neurotol. 2011 Dec;32(9):1559-67. doi: 10.1097/MAO.0b013e31822e94f3.


Ossicular motion related to middle ear transmission delay in gerbil.

de La Rochefoucauld O, Kachroo P, Olson ES.

Hear Res. 2010 Dec 1;270(1-2):158-72. doi: 10.1016/j.heares.2010.07.010. Epub 2010 Aug 7.


Motion of the surface of the human tympanic membrane measured with stroboscopic holography.

Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes Mdel S, Furlong C, Merchant SN, Rosowski JJ.

Hear Res. 2010 May;263(1-2):66-77. doi: 10.1016/j.heares.2009.12.024. Epub 2009 Dec 23.

Supplemental Content

Support Center