Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30


Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis.

Haase MAB, Kominek J, Langdon QK, Kurtzman CP, Hittinger CT.

FEMS Yeast Res. 2017 May 1;17(3). doi: 10.1093/femsyr/fox019.


Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.

Deregowska A, Skoneczny M, Adamczyk J, Kwiatkowska A, Rawska E, Skoneczna A, Lewinska A, Wnuk M.

Oncotarget. 2015 Oct 13;6(31):30650-63. doi: 10.18632/oncotarget.5594.


Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JH.

Biotechnol Biofuels. 2014 Aug 27;7(1):126. doi: 10.1186/s13068-014-0126-6. eCollection 2014.


Yeast growth plasticity is regulated by environment-specific multi-QTL interactions.

Bhatia A, Yadav A, Zhu C, Gagneur J, Radhakrishnan A, Steinmetz LM, Bhanot G, Sinha H.

G3 (Bethesda). 2014 Jan 28;4(5):769-77. doi: 10.1534/g3.113.009142.


Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype.

Gagneur J, Stegle O, Zhu C, Jakob P, Tekkedil MM, Aiyar RS, Schuon AK, Pe'er D, Steinmetz LM.

PLoS Genet. 2013;9(9):e1003803. doi: 10.1371/journal.pgen.1003803. Epub 2013 Sep 19.


Genomic clustering and co-regulation of transcriptional networks in the pathogenic fungus Fusarium graminearum.

Lawler K, Hammond-Kosack K, Brazma A, Coulson RM.

BMC Syst Biol. 2013 Jun 27;7:52. doi: 10.1186/1752-0509-7-52.


Gene-environment interactions at nucleotide resolution.

Gerke J, Lorenz K, Ramnarine S, Cohen B.

PLoS Genet. 2010 Sep 30;6(9):e1001144. doi: 10.1371/journal.pgen.1001144.


Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae.

Christensen TS, Oliveira AP, Nielsen J.

BMC Syst Biol. 2009 Jan 14;3:7. doi: 10.1186/1752-0509-3-7.


Comparative genomics of wild type yeast strains unveils important genome diversity.

Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MA.

BMC Genomics. 2008 Nov 4;9:524. doi: 10.1186/1471-2164-9-524.


Global transcriptome and deletome profiles of yeast exposed to transition metals.

Jin YH, Dunlap PE, McBride SJ, Al-Refai H, Bushel PR, Freedman JH.

PLoS Genet. 2008 Apr 25;4(4):e1000053. doi: 10.1371/journal.pgen.1000053.


Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains.

Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L.

PLoS One. 2007 Mar 28;2(3):e322.


Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae.

Wang X, Bali M, Medintz I, Michels CA.

Eukaryot Cell. 2002 Oct;1(5):696-703.


Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces.

Jiang H, Medintz I, Zhang B, Michels CA.

J Bacteriol. 2000 Feb;182(3):647-54.


Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces.

Hu Z, Yue Y, Jiang H, Zhang B, Sherwood PW, Michels CA.

Genetics. 2000 Jan;154(1):121-32.


Yeast carbon catabolite repression.

Gancedo JM.

Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61. Review.


Constitutive mutations of the Saccharomyces cerevisiae MAL-activator genes MAL23, MAL43, MAL63, and mal64.

Gibson AW, Wojciechowicz LA, Danzi SE, Zhang B, Kim JH, Hu Z, Michels CA.

Genetics. 1997 Aug;146(4):1287-98.


Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae.

Medintz I, Jiang H, Han EK, Cui W, Michels CA.

J Bacteriol. 1996 Apr;178(8):2245-54.


Chemostat cultivation as a tool for studies on sugar transport in yeasts.

Weusthuis RA, Pronk JT, van den Broek PJ, van Dijken JP.

Microbiol Rev. 1994 Dec;58(4):616-30. Review.

Supplemental Content

Support Center