Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 47


Orientation-Selective Retinal Circuits in Vertebrates.

Antinucci P, Hindges R.

Front Neural Circuits. 2018 Feb 7;12:11. doi: 10.3389/fncir.2018.00011. eCollection 2018. Review.


Electrical synapses convey orientation selectivity in the mouse retina.

Nath A, Schwartz GW.

Nat Commun. 2017 Dec 11;8(1):2025. doi: 10.1038/s41467-017-01980-9.


Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats.

Yu WQ, Grzywacz NM, Lee EJ, Field GD.

J Neurophysiol. 2017 Jul 1;118(1):434-454. doi: 10.1152/jn.00826.2016. Epub 2017 Apr 19.


Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit.

Lee JS, Kim HJ, Ahn CH, Jeon CJ.

Acta Histochem Cytochem. 2017 Feb 28;50(1):29-37. doi: 10.1267/ahc.16024. Epub 2017 Feb 22.


Segregated Glycine-Glutamate Co-transmission from vGluT3 Amacrine Cells to Contrast-Suppressed and Contrast-Enhanced Retinal Circuits.

Lee S, Zhang Y, Chen M, Zhou ZJ.

Neuron. 2016 Apr 6;90(1):27-34. doi: 10.1016/j.neuron.2016.02.023. Epub 2016 Mar 17.


Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.

Venkataramani S, Taylor WR.

J Neurosci. 2016 Mar 16;36(11):3336-49. doi: 10.1523/JNEUROSCI.1432-15.2016.


Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina.

Nath A, Schwartz GW.

J Neurosci. 2016 Mar 16;36(11):3208-21. doi: 10.1523/JNEUROSCI.4554-15.2016.


Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

Mwachaka PM, Saidi H, Odula PO, Mandela PI.

J Ophthalmic Vis Res. 2015 Apr-Jun;10(2):144-50. doi: 10.4103/2008-322X.163770.


Visual coding with a population of direction-selective neurons.

Fiscella M, Franke F, Farrow K, Müller J, Roska B, da Silveira RA, Hierlemann A.

J Neurophysiol. 2015 Oct;114(4):2485-99. doi: 10.1152/jn.00919.2014. Epub 2015 Aug 19.


Broad thorny ganglion cells: a candidate for visual pursuit error signaling in the primate retina.

Puller C, Manookin MB, Neitz J, Rieke F, Neitz M.

J Neurosci. 2015 Apr 1;35(13):5397-408. doi: 10.1523/JNEUROSCI.4369-14.2015.


Dendritic morphology of caudal periaqueductal gray projecting retinal ganglion cells in Mongolian gerbil (Meriones unguiculatus).

Ren C, Pu M, Cui Q, So KF.

PLoS One. 2014 Jul 23;9(7):e103306. doi: 10.1371/journal.pone.0103306. eCollection 2014.


Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization.

Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL, Berson DM, Huberman AD.

J Neurosci. 2013 Nov 6;33(45):17797-813. doi: 10.1523/JNEUROSCI.2778-13.2013.


Computing complex visual features with retinal spike times.

Gütig R, Gollisch T, Sompolinsky H, Meister M.

PLoS One. 2013;8(1):e53063. doi: 10.1371/journal.pone.0053063. Epub 2013 Jan 2.


Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line.

Ivanova E, Lee P, Pan ZH.

J Comp Neurol. 2013 Jun 15;521(9):2165-80. doi: 10.1002/cne.23279.


The neuronal organization of the retina.

Masland RH.

Neuron. 2012 Oct 18;76(2):266-80. doi: 10.1016/j.neuron.2012.10.002. Epub 2012 Oct 17. Review.


Properties of the ON bistratified ganglion cell in the rabbit retina.

Hoshi H, Tian LM, Massey SC, Mills SL.

J Comp Neurol. 2013 May 1;521(7):1497-509. doi: 10.1002/cne.23237.


The spatial structure of a nonlinear receptive field.

Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, Wong RO, Rieke F.

Nat Neurosci. 2012 Nov;15(11):1572-80. doi: 10.1038/nn.3225. Epub 2012 Sep 23.


Interspike interval based filtering of directional selective retinal ganglion cells spike trains.

Martiniuc AV, Knoll A.

Comput Intell Neurosci. 2012;2012:918030. doi: 10.1155/2012/918030. Epub 2012 Aug 2.


The most numerous ganglion cell type of the mouse retina is a selective feature detector.

Zhang Y, Kim IJ, Sanes JR, Meister M.

Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):E2391-8. doi: 10.1073/pnas.1211547109. Epub 2012 Aug 13.


Organizational motifs for ground squirrel cone bipolar cells.

Light AC, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, Li X, Chiodo VA, Hauswirth WW, Li W, DeVries SH.

J Comp Neurol. 2012 Sep 1;520(13):2864-87. doi: 10.1002/cne.23068.

Supplemental Content

Support Center