Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock.

Wu J, Cao J, Su M, Feng G, Xu Y, Yi H.

Hortic Res. 2019 Mar 1;6:33. doi: 10.1038/s41438-018-0116-0. eCollection 2019.

2.

miRNomes involved in imparting thermotolerance to crop plants.

Gahlaut V, Baranwal VK, Khurana P.

3 Biotech. 2018 Dec;8(12):497. doi: 10.1007/s13205-018-1521-7. Epub 2018 Nov 24. Review.

PMID:
30498670
3.

Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model.

Hu J, Zeng T, Xia Q, Qian Q, Yang C, Ding Y, Chen L, Wang W.

Sci Rep. 2018 May 31;8(1):8498. doi: 10.1038/s41598-018-26438-w.

4.

Characterization of Conserved and Novel microRNAs in Lilium lancifolium Thunb. by High-Throughput Sequencing.

He X, Shenkute AG, Wang W, Xu S.

Sci Rep. 2018 Feb 13;8(1):2880. doi: 10.1038/s41598-018-21193-4.

5.

High-throughput sequencing analysis revealed the regulation patterns of small RNAs on the development of A. comosus var. bracteatus leaves.

Xiong YY, Ma J, He YH, Lin Z, Li X, Yu SM, Li RX, Jiang FX, Li X, Huang Z, Sun LX.

Sci Rep. 2018 Jan 31;8(1):1947. doi: 10.1038/s41598-018-20261-z.

6.

Non-coding RNAs and Their Roles in Stress Response in Plants.

Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M.

Genomics Proteomics Bioinformatics. 2017 Oct;15(5):301-312. doi: 10.1016/j.gpb.2017.01.007. Epub 2017 Oct 7. Review.

7.

MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing.

Liang WW, Huang JH, Li CP, Yang LT, Ye X, Lin D, Chen LS.

BMC Genomics. 2017 Aug 24;18(1):657. doi: 10.1186/s12864-017-3999-5.

8.

Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus.

Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, Wang H, Sang S, Tang M, Zhou R, Chu W, Fu L, Hu Q.

Int J Mol Sci. 2017 May 8;18(5). pii: E887. doi: 10.3390/ijms18050887.

9.

isomiR2Function: An Integrated Workflow for Identifying MicroRNA Variants in Plants.

Yang K, Sablok G, Qiao G, Nie Q, Wen X.

Front Plant Sci. 2017 Mar 21;8:322. doi: 10.3389/fpls.2017.00322. eCollection 2017.

10.

PceRBase: a database of plant competing endogenous RNA.

Yuan C, Meng X, Li X, Illing N, Ingle RA, Wang J, Chen M.

Nucleic Acids Res. 2017 Jan 4;45(D1):D1009-D1014. doi: 10.1093/nar/gkw916. Epub 2016 Oct 7.

11.

MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.

Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH.

Front Plant Sci. 2016 Jun 14;7:817. doi: 10.3389/fpls.2016.00817. eCollection 2016. Review.

12.

MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency.

Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Ye X, Chen LS.

Front Plant Sci. 2016 Mar 4;7:201. doi: 10.3389/fpls.2016.00201. eCollection 2016.

13.
14.

miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining.

Yu L, Shao C, Ye X, Meng Y, Zhou Y, Chen M.

Sci Rep. 2016 Jan 6;6:18901. doi: 10.1038/srep18901.

15.

Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution.

Tripathi A, Goswami K, Sanan-Mishra N.

Front Physiol. 2015 Oct 26;6:286. doi: 10.3389/fphys.2015.00286. eCollection 2015. Review.

16.

Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS.

BMC Plant Biol. 2015 Nov 4;15:271. doi: 10.1186/s12870-015-0642-y.

Supplemental Content

Support Center