Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Wing bone geometry reveals active flight in Archaeopteryx.

Voeten DFAE, Cubo J, de Margerie E, Röper M, Beyrand V, Bureš S, Tafforeau P, Sanchez S.

Nat Commun. 2018 Mar 13;9(1):923. doi: 10.1038/s41467-018-03296-8.

2.

The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria.

Rauhut OWM, Foth C, Tischlinger H.

PeerJ. 2018 Jan 26;6:e4191. doi: 10.7717/peerj.4191. eCollection 2018.

3.

Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs.

Foth C, Rauhut OWM.

BMC Evol Biol. 2017 Dec 2;17(1):236. doi: 10.1186/s12862-017-1076-y.

4.

Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird.

Wang M, Li Z, Zhou Z.

Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11470-11475. doi: 10.1073/pnas.1707237114. Epub 2017 Oct 9.

5.

Correlated evolution of sternal keel length and ilium length in birds.

Zhao T, Liu D, Li Z.

PeerJ. 2017 Jul 26;5:e3622. doi: 10.7717/peerj.3622. eCollection 2017.

6.

Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.

Serrano FJ, Chiappe LM.

J R Soc Interface. 2017 Jul;14(132). pii: 20170182. doi: 10.1098/rsif.2017.0182.

7.

Basal paravian functional anatomy illuminated by high-detail body outline.

Wang X, Pittman M, Zheng X, Kaye TG, Falk AR, Hartman SA, Xu X.

Nat Commun. 2017 Mar 1;8:14576. doi: 10.1038/ncomms14576.

8.

The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.

Dececchi TA, Larsson HC, Habib MB.

PeerJ. 2016 Jul 7;4:e2159. doi: 10.7717/peerj.2159. eCollection 2016.

9.

A new basal bird from China with implications for morphological diversity in early birds.

Wang M, Wang X, Wang Y, Zhou Z.

Sci Rep. 2016 Jan 25;6:19700. doi: 10.1038/srep19700.

10.

Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.

Navalón G, Marugán-Lobón J, Chiappe LM, Luis Sanz J, Buscalioni ÁD.

Sci Rep. 2015 Oct 6;5:14864. doi: 10.1038/srep14864.

11.

Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds.

O'Connor JK, Zheng XT, Sullivan C, Chuong CM, Wang XL, Li A, Wang Y, Zhang XM, Zhou ZH.

J Evol Biol. 2015 Aug;28(8):1550-67. doi: 10.1111/jeb.12675. Epub 2015 Jul 7.

12.

Comment on the absence of ossified sternal elements in basal paravian dinosaurs.

Foth C.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5334. doi: 10.1073/pnas.1419023111. Epub 2014 Dec 5. No abstract available.

13.

Reply to Foth: Preserved cartilage is rare but not absent: troodontid sternal plates are absent, not rare.

O'Connor JK, Wang M, Zheng X, Zhou Z.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5335. doi: 10.1073/pnas.1419403111. Epub 2014 Dec 5. No abstract available.

14.

Shifts in stability and control effectiveness during evolution of Paraves support aerial maneuvering hypotheses for flight origins.

Evangelista D, Cam S, Huynh T, Kwong A, Mehrabani H, Tse K, Dudley R.

PeerJ. 2014 Oct 16;2:e632. doi: 10.7717/peerj.632. eCollection 2014.

Supplemental Content

Support Center