Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 19

1.

Novel and Conserved miRNAs Among Brazilian Pine and Other Gymnosperms.

Galdino JH, Eguiluz M, Guzman F, Margis R.

Front Genet. 2019 Mar 22;10:222. doi: 10.3389/fgene.2019.00222. eCollection 2019.

2.

Improved Pre-miRNAs Identification Through Mutual Information of Pre-miRNA Sequences and Structures.

Fu X, Zhu W, Cai L, Liao B, Peng L, Chen Y, Yang J.

Front Genet. 2019 Feb 25;10:119. doi: 10.3389/fgene.2019.00119. eCollection 2019.

3.

miRNomes involved in imparting thermotolerance to crop plants.

Gahlaut V, Baranwal VK, Khurana P.

3 Biotech. 2018 Dec;8(12):497. doi: 10.1007/s13205-018-1521-7. Epub 2018 Nov 24. Review.

PMID:
30498670
4.

Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism.

Agapito-Tenfen SZ, Vilperte V, Traavik TI, Nodari RO.

Environ Sci Eur. 2018;30(1):37. doi: 10.1186/s12302-018-0168-7. Epub 2018 Sep 19.

5.

A comprehensive review of web-based resources of non-coding RNAs for plant science research.

Liao P, Li S, Cui X, Zheng Y.

Int J Biol Sci. 2018 May 22;14(8):819-832. doi: 10.7150/ijbs.24593. eCollection 2018. Review.

6.

Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data.

Axtell MJ, Meyers BC.

Plant Cell. 2018 Feb;30(2):272-284. doi: 10.1105/tpc.17.00851. Epub 2018 Jan 17. Review.

7.

Development of hop transcriptome to support research into host-viroid interactions.

Pokorn T, Radišek S, Javornik B, Štajner N, Jakše J.

PLoS One. 2017 Sep 8;12(9):e0184528. doi: 10.1371/journal.pone.0184528. eCollection 2017.

8.

New technologies accelerate the exploration of non-coding RNAs in horticultural plants.

Liu D, Mewalal R, Hu R, Tuskan GA, Yang X.

Hortic Res. 2017 Jul 5;4:17031. doi: 10.1038/hortres.2017.31. eCollection 2017. Review.

9.

Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum) Using High Throughput Sequencing.

Farooq M, Mansoor S, Guo H, Amin I, Chee PW, Azim MK, Paterson AH.

Front Plant Sci. 2017 Jun 15;8:969. doi: 10.3389/fpls.2017.00969. eCollection 2017.

10.

Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.

Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B.

BMC Genomics. 2017 Jun 26;18(1):481. doi: 10.1186/s12864-017-3869-1.

11.

miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets.

Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S.

Bioinformatics. 2017 Aug 15;33(16):2446-2454. doi: 10.1093/bioinformatics/btx210.

12.

The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis.

Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, Yuan L, Pattanaik S.

Sci Rep. 2017 Feb 22;7:43027. doi: 10.1038/srep43027.

13.

A Comprehensive Prescription for Plant miRNA Identification.

Alptekin B, Akpinar BA, Budak H.

Front Plant Sci. 2017 Jan 24;7:2058. doi: 10.3389/fpls.2016.02058. eCollection 2016.

14.

miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis.

Zhang H, Vieira Resende E Silva B, Cui J.

Brief Bioinform. 2018 May 1;19(3):415-424. doi: 10.1093/bib/bbw140.

15.

Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages.

Sun Y, Mui Z, Liu X, Yim AK, Qin H, Wong FL, Chan TF, Yiu SM, Lam HM, Lim BL.

Int J Mol Sci. 2016 Dec 6;17(12). pii: E2043.

16.
17.

miRA: adaptable novel miRNA identification in plants using small RNA sequencing data.

Evers M, Huttner M, Dueck A, Meister G, Engelmann JC.

BMC Bioinformatics. 2015 Nov 5;16:370. doi: 10.1186/s12859-015-0798-3.

18.

Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods.

Ku YS, Wong JW, Mui Z, Liu X, Hui JH, Chan TF, Lam HM.

Int J Mol Sci. 2015 Oct 15;16(10):24532-54. doi: 10.3390/ijms161024532. Review.

19.

Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes.

Law M, Childs KL, Campbell MS, Stein JC, Olson AJ, Holt C, Panchy N, Lei J, Jiao D, Andorf CM, Lawrence CJ, Ware D, Shiu SH, Sun Y, Jiang N, Yandell M.

Plant Physiol. 2015 Jan;167(1):25-39. doi: 10.1104/pp.114.245027. Epub 2014 Nov 10.

Supplemental Content

Support Center