Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

FCMDAP: using miRNA family and cluster information to improve the prediction accuracy of disease related miRNAs.

Li X, Lin Y, Gu C, Yang J.

BMC Syst Biol. 2019 Apr 5;13(Suppl 2):26. doi: 10.1186/s12918-019-0696-9.

2.

Long Noncoding RNA and Protein Interactions: From Experimental Results to Computational Models Based on Network Methods.

Zhang H, Liang Y, Han S, Peng C, Li Y.

Int J Mol Sci. 2019 Mar 14;20(6). pii: E1284. doi: 10.3390/ijms20061284.

3.

Global Genetics Research in Prostate Cancer: A Text Mining and Computational Network Theory Approach.

Azam MF, Musa A, Dehmer M, Yli-Harja OP, Emmert-Streib F.

Front Genet. 2019 Feb 14;10:70. doi: 10.3389/fgene.2019.00070. eCollection 2019.

4.

Statistical principle-based approach for recognizing and normalizing microRNAs described in scientific literature.

Dai HJ, Wang CK, Chang NW, Huang MS, Jonnagaddala J, Wang FD, Hsu WL.

Database (Oxford). 2019 Jan 1;2019. pii: baz030. doi: 10.1093/database/baz030.

5.

MicroRNAs in Female Malignancies.

Liolios T, Kastora SL, Colombo G.

Cancer Inform. 2019 Feb 13;18:1176935119828746. doi: 10.1177/1176935119828746. eCollection 2019.

6.

3D Mammary Epithelial Cell Models: A Goldmine of DCIS Biomarkers and Morphogenetic Mechanisms.

Rossetti S, Sacchi N.

Cancers (Basel). 2019 Jan 23;11(2). pii: E130. doi: 10.3390/cancers11020130.

7.

Advanced microRNA-based cancer diagnostics using amplified time-gated FRET.

Qiu X, Xu J, Guo J, Yahia-Ammar A, Kapetanakis NI, Duroux-Richard I, Unterluggauer JJ, Golob-Schwarzl N, Regeard C, Uzan C, Gouy S, DuBow M, Haybaeck J, Apparailly F, Busson P, Hildebrandt N.

Chem Sci. 2018 Sep 11;9(42):8046-8055. doi: 10.1039/c8sc03121e. eCollection 2018 Nov 14.

8.

Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs.

Xuan P, Dong Y, Guo Y, Zhang T, Liu Y.

Int J Mol Sci. 2018 Nov 23;19(12). pii: E3732. doi: 10.3390/ijms19123732.

9.

CMTCN: a web tool for investigating cancer-specific microRNA and transcription factor co-regulatory networks.

Li R, Chen H, Jiang S, Li W, Li H, Zhang Z, Hong H, Huang X, Zhao C, Lu Y, Bo X.

PeerJ. 2018 Nov 12;6:e5951. doi: 10.7717/peerj.5951. eCollection 2018.

10.

BioGraph: a web application and a graph database for querying and analyzing bioinformatics resources.

Messina A, Fiannaca A, La Paglia L, La Rosa M, Urso A.

BMC Syst Biol. 2018 Nov 20;12(Suppl 5):98. doi: 10.1186/s12918-018-0616-4.

11.

Gold-containing compound BDG-I inhibits the growth of A549 lung cancer cells through the deregulation of miRNA expression.

Alhoshani A, Alrashdi A, Alhosaini K, Alanazi FE, Alajez NM, Altaf M, Isab AA, Korashy HM.

Saudi Pharm J. 2018 Nov;26(7):1035-1043. doi: 10.1016/j.jsps.2018.05.012. Epub 2018 Jun 6.

12.

Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis.

Hu Y, Dingerdissen H, Gupta S, Kahsay R, Shanker V, Wan Q, Yan C, Mazumder R.

Comput Biol Med. 2018 Dec 1;103:183-197. doi: 10.1016/j.compbiomed.2018.10.021. Epub 2018 Oct 22.

PMID:
30384176
13.

Expression of the miR-150 tumor suppressor is restored by and synergizes with rapamycin in a human leukemia T-cell line.

Podshivalova K, Wang EA, Hart T, Salomon DR.

Leuk Res. 2018 Nov;74:1-9. doi: 10.1016/j.leukres.2018.09.009. Epub 2018 Sep 22.

PMID:
30269036
14.

The tumor suppressor role of microRNA-338-3p in renal cell carcinoma.

Huang Y, Wu Y, Zeng L, Shan W, Huang L.

Oncol Lett. 2018 Aug;16(2):2195-2200. doi: 10.3892/ol.2018.8914. Epub 2018 Jun 6.

15.

Identification and functional annotation of metabolism-associated lncRNAs and their related protein-coding genes in gastric cancer.

Mo X, Li T, Xie Y, Zhu L, Xiao B, Liao Q, Guo J.

Mol Genet Genomic Med. 2018 Sep;6(5):728-738. doi: 10.1002/mgg3.427. Epub 2018 Jul 10.

16.

DEXTER: Disease-Expression Relation Extraction from Text.

Gupta S, Dingerdissen H, Ross KE, Hu Y, Wu CH, Mazumder R, Vijay-Shanker K.

Database (Oxford). 2018 Jan 1;2018. doi: 10.1093/database/bay045.

17.

A Novel Model for Predicting Associations between Diseases and LncRNA-miRNA Pairs Based on a Newly Constructed Bipartite Network.

Zhou S, Xuan Z, Wang L, Ping P, Pei T.

Comput Math Methods Med. 2018 May 6;2018:6789089. doi: 10.1155/2018/6789089. eCollection 2018.

18.

MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma.

Bladen JC, Wang J, Sangaralingam A, Moosajee M, Fitchett C, Chelala C, Beaconsfield M, O'Toole EA, Philpott MP, Ezra DG.

Sci Rep. 2018 May 14;8(1):7531. doi: 10.1038/s41598-018-25900-z.

19.

SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction.

Li X, Lin Y, Gu C, Li Z.

Biomed Res Int. 2018 Mar 21;2018:5747489. doi: 10.1155/2018/5747489. eCollection 2018.

20.

Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA-Disease Association.

Chen M, Liao B, Li Z.

Sci Rep. 2018 Apr 24;8(1):6481. doi: 10.1038/s41598-018-24532-7.

Supplemental Content

Support Center