Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

A novel short L-arginine responsive protein-coding gene (laoB) antiparallel overlapping to a CadC-like transcriptional regulator in Escherichia coli O157:H7 Sakai originated by overprinting.

Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Wecko R, Simon S, Scherer S, Neuhaus K.

BMC Evol Biol. 2018 Feb 12;18(1):21. doi: 10.1186/s12862-018-1134-0.

2.

High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast.

Candelli T, Challal D, Briand JB, Boulay J, Porrua O, Colin J, Libri D.

EMBO J. 2018 Feb 15;37(4). pii: e97490. doi: 10.15252/embj.201797490. Epub 2018 Jan 19.

PMID:
29351914
3.

Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome.

Plissonneau C, Hartmann FE, Croll D.

BMC Biol. 2018 Jan 11;16(1):5. doi: 10.1186/s12915-017-0457-4.

4.

A Molecular Portrait of De Novo Genes in Yeasts.

Vakirlis N, Hebert AS, Opulente DA, Achaz G, Hittinger CT, Fischer G, Coon JJ, Lafontaine I.

Mol Biol Evol. 2018 Mar 1;35(3):631-645. doi: 10.1093/molbev/msx315.

PMID:
29220506
5.

De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data.

Baalsrud HT, Tørresen OK, Hongrø Solbakken M, Salzburger W, Hanel R, Jakobsen KS, Jentoft S.

Mol Biol Evol. 2017 Dec 5. doi: 10.1093/molbev/msx311. [Epub ahead of print]

6.

An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics.

Omasits U, Varadarajan AR, Schmid M, Goetze S, Melidis D, Bourqui M, Nikolayeva O, Québatte M, Patrignani A, Dehio C, Frey JE, Robinson MD, Wollscheid B, Ahrens CH.

Genome Res. 2017 Dec;27(12):2083-2095. doi: 10.1101/gr.218255.116. Epub 2017 Nov 15.

7.

Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins.

Samandi S, Roy AV, Delcourt V, Lucier JF, Gagnon J, Beaudoin MC, Vanderperre B, Breton MA, Motard J, Jacques JF, Brunelle M, Gagnon-Arsenault I, Fournier I, Ouangraoua A, Hunting DJ, Cohen AA, Landry CR, Scott MS, Roucou X.

Elife. 2017 Oct 30;6. pii: e27860. doi: 10.7554/eLife.27860.

8.

A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome.

Bertomeu T, Coulombe-Huntington J, Chatr-Aryamontri A, Bourdages KG, Coyaud E, Raught B, Xia Y, Tyers M.

Mol Cell Biol. 2017 Dec 13;38(1). pii: e00302-17. doi: 10.1128/MCB.00302-17. Print 2018 Jan 1.

PMID:
29038160
9.

Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen.

Hartmann FE, Croll D.

Mol Biol Evol. 2017 Nov 1;34(11):2808-2822. doi: 10.1093/molbev/msx208.

10.

A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts.

Lu TC, Leu JY, Lin WC.

Mol Biol Evol. 2017 Nov 1;34(11):2823-2838. doi: 10.1093/molbev/msx210.

11.

A database for orphan genes in Poaceae.

Yao C, Yan H, Zhang X, Wang R.

Exp Ther Med. 2017 Oct;14(4):2917-2924. doi: 10.3892/etm.2017.4918. Epub 2017 Aug 9.

12.

Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli.

D'Lima NG, Khitun A, Rosenbloom AD, Yuan P, Gassaway BM, Barber KW, Rinehart J, Slavoff SA.

J Proteome Res. 2017 Oct 6;16(10):3722-3731. doi: 10.1021/acs.jproteome.7b00419. Epub 2017 Sep 19.

PMID:
28861998
13.

New Genes and Functional Innovation in Mammals.

Luis Villanueva-Cañas J, Ruiz-Orera J, Agea MI, Gallo M, Andreu D, Albà MM.

Genome Biol Evol. 2017 Jul 1;9(7):1886-1900. doi: 10.1093/gbe/evx136.

14.

Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae.

Verster AJ, Styles EB, Mateo A, Derry WB, Andrews BJ, Fraser AG.

G3 (Bethesda). 2017 Oct 5;7(10):3337-3347. doi: 10.1534/g3.117.300193.

15.

The Ground State and Evolution of Promoter Region Directionality.

Jin Y, Eser U, Struhl K, Churchman LS.

Cell. 2017 Aug 24;170(5):889-898.e10. doi: 10.1016/j.cell.2017.07.006. Epub 2017 Aug 10.

PMID:
28803729
16.

Young Genes are Highly Disordered as Predicted by the Preadaptation Hypothesis of De Novo Gene Birth.

Wilson BA, Foy SG, Neme R, Masel J.

Nat Ecol Evol. 2017 Jun;1(6):0146-146. doi: 10.1038/s41559-017-0146. Epub 2017 Apr 24.

17.

Further Simulations and Analyses Demonstrate Open Problems of Phylostratigraphy.

Moyers BA, Zhang J.

Genome Biol Evol. 2017 Jun 1;9(6):1519-1527. doi: 10.1093/gbe/evx109.

18.

Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina).

Dujon BA, Louis EJ.

Genetics. 2017 Jun;206(2):717-750. doi: 10.1534/genetics.116.199216. Review.

19.

Random sequences are an abundant source of bioactive RNAs or peptides.

Neme R, Amador C, Yildirim B, McConnell E, Tautz D.

Nat Ecol Evol. 2017 Jun;1(6):0217. doi: 10.1038/s41559-017-0127. Epub 2017 Apr 24.

20.

Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution.

Livnat A.

Evol Biol. 2017;44(2):145-189. doi: 10.1007/s11692-017-9407-x. Epub 2017 Mar 11.

Supplemental Content

Support Center