Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain.

Cosacak MI, Bhattarai P, Bocova L, Dzewas T, Mashkaryan V, Papadimitriou C, Brandt K, Hollak H, Antos CL, Kizil C.

Sci Rep. 2017 Oct 11;7(1):12959. doi: 10.1038/s41598-017-13311-5.

2.

Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers.

Young LM, Tu LH, Raleigh DP, Ashcroft AE, Radford SE.

Chem Sci. 2017 Jul 1;8(7):5030-5040. doi: 10.1039/c7sc00620a. Epub 2017 May 9.

3.

The physical dimensions of amyloid aggregates control their infective potential as prion particles.

Marchante R, Beal DM, Koloteva-Levine N, Purton TJ, Tuite MF, Xue WF.

Elife. 2017 Sep 7;6. pii: e27109. doi: 10.7554/eLife.27109.

4.

APP/Aβ structural diversity and Alzheimer's disease pathogenesis.

Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG.

Neurochem Int. 2017 Nov;110:1-13. doi: 10.1016/j.neuint.2017.08.007. Epub 2017 Aug 12. Review.

PMID:
28811267
5.

Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Alzheimer immunotherapy.

Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S, Rahfeld JU, Stubbs MT.

J Biol Chem. 2017 Jul 28;292(30):12713-12724. doi: 10.1074/jbc.M117.777839. Epub 2017 Jun 16.

PMID:
28623233
6.

Tau association with synaptic vesicles causes presynaptic dysfunction.

Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, Wang YC, Swerts J, Beyens J, Miskiewicz K, Vilain S, Dewachter I, Moechars D, De Strooper B, Spires-Jones TL, De Wit J, Verstreken P.

Nat Commun. 2017 May 11;8:15295. doi: 10.1038/ncomms15295.

7.

Wild-Type, but Not Mutant N296H, Human Tau Restores Aβ-Mediated Inhibition of LTP in Tau-/- mice.

Vargas-Caballero M, Denk F, Wobst HJ, Arch E, Pegasiou CM, Oliver PL, Shipton OA, Paulsen O, Wade-Martins R.

Front Neurosci. 2017 Apr 24;11:201. doi: 10.3389/fnins.2017.00201. eCollection 2017.

8.

Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction.

Swanson E, Breckenridge L, McMahon L, Som S, McConnell I, Bloom GS.

J Alzheimers Dis. 2017;58(3):803-820. doi: 10.3233/JAD-170168.

9.

Posttranslational modification impact on the mechanism by which amyloid-β induces synaptic dysfunction.

Grochowska KM, Yuanxiang P, Bär J, Raman R, Brugal G, Sahu G, Schweizer M, Bikbaev A, Schilling S, Demuth HU, Kreutz MR.

EMBO Rep. 2017 Jun;18(6):962-981. doi: 10.15252/embr.201643519. Epub 2017 Apr 18.

PMID:
28420656
10.

Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-β Peptide.

Hatami A, Monjazeb S, Milton S, Glabe CG.

J Biol Chem. 2017 Feb 24;292(8):3172-3185. doi: 10.1074/jbc.M116.755264. Epub 2017 Jan 3.

PMID:
28049728
11.

Phosphorylation at Ser8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils.

Hu ZW, Ma MR, Chen YX, Zhao YF, Qiang W, Li YM.

J Biol Chem. 2017 Feb 17;292(7):2611-2623. doi: 10.1074/jbc.M116.757179. Epub 2016 Dec 28. Erratum in: J Biol Chem. 2017 May 26;292(21):8846.

PMID:
28031462
12.

Soluble Amyloid-beta Aggregates from Human Alzheimer's Disease Brains.

Esparza TJ, Wildburger NC, Jiang H, Gangolli M, Cairns NJ, Bateman RJ, Brody DL.

Sci Rep. 2016 Dec 5;6:38187. doi: 10.1038/srep38187.

13.

A modification-specific peptide-based immunization approach using CRM197 carrier protein: Development of a selective vaccine against pyroglutamate Aβ peptides.

Vingtdeux V, Zhao H, Chandakkar P, Acker CM, Davies P, Marambaud P.

Mol Med. 2016 Nov 28;22. doi: 10.2119/molmed.2016.00218. [Epub ahead of print]

14.

Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer's disease and track disease progression and cognitive decline.

Koss DJ, Jones G, Cranston A, Gardner H, Kanaan NM, Platt B.

Acta Neuropathol. 2016 Dec;132(6):875-895. Epub 2016 Oct 21.

15.

pGluAβ increases accumulation of Aβ in vivo and exacerbates its toxicity.

Sofola-Adesakin O, Khericha M, Snoeren I, Tsuda L, Partridge L.

Acta Neuropathol Commun. 2016 Oct 7;4(1):109.

16.

Fibrils of Truncated Pyroglutamyl-Modified Aβ Peptide Exhibit a Similar Structure as Wildtype Mature Aβ Fibrils.

Scheidt HA, Adler J, Krueger M, Huster D.

Sci Rep. 2016 Sep 21;6:33531. doi: 10.1038/srep33531.

17.

A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis.

Andrew RJ, Kellett KA, Thinakaran G, Hooper NM.

J Biol Chem. 2016 Sep 9;291(37):19235-44. doi: 10.1074/jbc.R116.746032. Epub 2016 Jul 29. Review.

18.

Immunotherapy targeting pyroglutamate-3 Aβ: prospects and challenges.

Cynis H, Frost JL, Crehan H, Lemere CA.

Mol Neurodegener. 2016 Jun 30;11(1):48. doi: 10.1186/s13024-016-0115-2. Review.

19.

Small molecule NPT-440-1 inhibits ionic flux through Aβ1-42 pores: Implications for Alzheimer's disease therapeutics.

Gillman AL, Lee J, Ramachandran S, Capone R, Gonzalez T, Wrasidlo W, Masliah E, Lal R.

Nanomedicine. 2016 Nov;12(8):2331-2340. doi: 10.1016/j.nano.2016.06.001. Epub 2016 Jun 19.

20.

Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease.

Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Neubert TA, Ghiso JA, LeVine H 3rd, Walker LC.

Neurobiol Aging. 2016 Aug;44:185-196. doi: 10.1016/j.neurobiolaging.2016.04.019. Epub 2016 May 2.

Supplemental Content

Support Center