Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells.

Burr S, Caldwell A, Chong M, Beretta M, Metcalf S, Hancock M, Arno M, Balu S, Kropf VL, Mistry RK, Shah AM, Mann GE, Brewer AC.

Nucleic Acids Res. 2018 Feb 16;46(3):1210-1226. doi: 10.1093/nar/gkx1197.

2.

Genetic compensation: A phenomenon in search of mechanisms.

El-Brolosy MA, Stainier DYR.

PLoS Genet. 2017 Jul 13;13(7):e1006780. doi: 10.1371/journal.pgen.1006780. eCollection 2017 Jul. Review.

3.

Tet1-dependent epigenetic modification of BDNF expression in dorsal horn neurons mediates neuropathic pain in rats.

Hsieh MC, Lai CY, Ho YC, Wang HH, Cheng JK, Chau YP, Peng HY.

Sci Rep. 2016 Nov 18;6:37411. doi: 10.1038/srep37411.

4.

DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells.

Hainer SJ, McCannell KN, Yu J, Ee LS, Zhu LJ, Rando OJ, Fazzio TG.

Elife. 2016 Nov 16;5. pii: e21964. doi: 10.7554/eLife.21964.

5.

miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs.

Cui Y, Li T, Yang D, Li S, Le W.

Oncotarget. 2016 Oct 4;7(40):64932-64941. doi: 10.18632/oncotarget.10751.

6.

Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.

van den Hurk M, Kenis G, Bardy C, van den Hove DL, Gage FH, Steinbusch HW, Rutten BP.

Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15. Review.

7.

Systematic identification of gene family regulators in mouse and human embryonic stem cells.

Aaronson Y, Livyatan I, Gokhman D, Meshorer E.

Nucleic Acids Res. 2016 May 19;44(9):4080-9. doi: 10.1093/nar/gkw259. Epub 2016 Apr 15.

8.

Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling.

Hu J, Yang Z, Wang J, Yu J, Guo J, Liu S, Qian C, Song L, Wu Y, Cheng J.

PLoS One. 2016 Feb 24;11(2):e0148994. doi: 10.1371/journal.pone.0148994. eCollection 2016.

9.

Implications of Epigenetic Variability within a Cell Population for "Cell Type" Classification.

Tabansky I, Stern JN, Pfaff DW.

Front Behav Neurosci. 2015 Dec 16;9:342. doi: 10.3389/fnbeh.2015.00342. eCollection 2015. Review.

10.

Common stemness regulators of embryonic and cancer stem cells.

Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A.

World J Stem Cells. 2015 Oct 26;7(9):1150-84. doi: 10.4252/wjsc.v7.i9.1150. Review.

11.

MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells.

Tu J, Ng SH, Luk AC, Liao J, Jiang X, Feng B, Lun Mak KK, Rennert OM, Chan WY, Lee TL.

Nucleic Acids Res. 2015 Sep 18;43(16):7805-22. doi: 10.1093/nar/gkv653. Epub 2015 Jun 30.

12.

Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors.

Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S, Jothi R.

Mol Cell. 2014 Sep 4;55(5):708-22. doi: 10.1016/j.molcel.2014.07.005. Epub 2014 Aug 14.

13.

Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.

Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD.

Genome Biol. 2014 Jun 23;15(6):R81. doi: 10.1186/gb-2014-15-6-r81.

14.

Playing TETris with DNA modifications.

Delatte B, Deplus R, Fuks F.

EMBO J. 2014 Jun 2;33(11):1198-211. doi: 10.15252/embj.201488290. Epub 2014 May 13. Review.

15.

Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis.

Cinghu S, Yellaboina S, Freudenberg JM, Ghosh S, Zheng X, Oldfield AJ, Lackford BL, Zaykin DV, Hu G, Jothi R.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1581-90. doi: 10.1073/pnas.1318598111. Epub 2014 Apr 7.

16.

LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway.

Li X, Yang Q, Yu H, Wu L, Zhao Y, Zhang C, Yue X, Liu Z, Wu H, Haffty BG, Feng Z, Hu W.

Oncotarget. 2014 Feb 15;5(3):788-801.

17.

Reversing DNA methylation: mechanisms, genomics, and biological functions.

Wu H, Zhang Y.

Cell. 2014 Jan 16;156(1-2):45-68. doi: 10.1016/j.cell.2013.12.019.

18.

Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes.

Hall EA, Keighren M, Ford MJ, Davey T, Jarman AP, Smith LB, Jackson IJ, Mill P.

PLoS Genet. 2013;9(12):e1003928. doi: 10.1371/journal.pgen.1003928. Epub 2013 Dec 26.

19.

TET enzymes, TDG and the dynamics of DNA demethylation.

Kohli RM, Zhang Y.

Nature. 2013 Oct 24;502(7472):472-9. doi: 10.1038/nature12750. Review.

20.

Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells.

Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, Parlato C, Oliviero S.

Genome Biol. 2013 Aug 29;14(8):R91. doi: 10.1186/gb-2013-14-8-r91.

Supplemental Content

Support Center