Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 40

1.

Identification and Characterization of Salt-Responsive MicroRNAs in Vicia faba by High-Throughput Sequencing.

Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA.

Genes (Basel). 2019 Apr 17;10(4). pii: E303. doi: 10.3390/genes10040303.

2.

Identification and expression profiling of miRNAs in two color variants of carrot (Daucus carota L.) using deep sequencing.

Bhan B, Koul A, Sharma D, Manzoor MM, Kaul S, Gupta S, Dhar MK.

PLoS One. 2019 Mar 7;14(3):e0212746. doi: 10.1371/journal.pone.0212746. eCollection 2019.

3.

Novel small RNA spike-in oligonucleotides enable absolute normalization of small RNA-Seq data.

Lutzmayer S, Enugutti B, Nodine MD.

Sci Rep. 2017 Jul 19;7(1):5913. doi: 10.1038/s41598-017-06174-3.

4.

The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens.

Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B.

Sci Rep. 2017 Mar 23;7:44898. doi: 10.1038/srep44898.

5.

Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing.

Xu S, Jiang Y, Wang N, Xia B, Jiang Y, Li X, Zhang Z, Li Y, Wang R.

BMC Genomics. 2016 Oct 10;17(1):789.

6.

Unique cell-type-specific patterns of DNA methylation in the root meristem.

Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han X, Lister R, Benfey PN, Ecker JR.

Nat Plants. 2016 Apr 29;2(5):16058. doi: 10.1038/nplants.2016.58.

7.

Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain.

Villarino GH, Hu Q, Manrique S, Flores-Vergara M, Sehra B, Robles L, Brumos J, Stepanova AN, Colombo L, Sundberg E, Heber S, Franks RG.

Plant Physiol. 2016 May;171(1):42-61. doi: 10.1104/pp.15.01845. Epub 2016 Mar 16.

8.

An Efficient LCM-Based Method for Tissue Specific Expression Analysis of Genes and miRNAs.

Gautam V, Singh A, Singh S, Sarkar AK.

Sci Rep. 2016 Feb 10;6:21577. doi: 10.1038/srep21577.

9.

Light-Inducible MiR163 Targets PXMT1 Transcripts to Promote Seed Germination and Primary Root Elongation in Arabidopsis.

Chung PJ, Park BS, Wang H, Liu J, Jang IC, Chua NH.

Plant Physiol. 2016 Mar;170(3):1772-82. doi: 10.1104/pp.15.01188. Epub 2016 Jan 14.

10.

MicroRNA miR396 Regulates the Switch between Stem Cells and Transit-Amplifying Cells in Arabidopsis Roots.

Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF.

Plant Cell. 2015 Dec;27(12):3354-66. doi: 10.1105/tpc.15.00452. Epub 2015 Dec 8.

11.

Genetic control of root growth: from genes to networks.

Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W.

Ann Bot. 2016 Jan;117(1):9-24. doi: 10.1093/aob/mcv160. Epub 2015 Nov 11. Review.

12.

Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust.

Feng H, Wang B, Zhang Q, Fu Y, Huang L, Wang X, Kang Z.

Front Plant Sci. 2015 Jun 30;6:469. doi: 10.3389/fpls.2015.00469. eCollection 2015.

13.

Differential and coherent processing patterns from small RNAs.

Pundhir S, Gorodkin J.

Sci Rep. 2015 Jul 13;5:12062. doi: 10.1038/srep12062.

14.

An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress.

Agharbaoui Z, Leclercq M, Remita MA, Badawi MA, Lord E, Houde M, Danyluk J, Diallo AB, Sarhan F.

BMC Genomics. 2015 Apr 24;16:339. doi: 10.1186/s12864-015-1490-8.

15.

Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, Ferreira PC.

BMC Genomics. 2014 Sep 6;15:766. doi: 10.1186/1471-2164-15-766.

16.

Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing.

Jain M, Chevala VV, Garg R.

J Exp Bot. 2014 Nov;65(20):5945-58. doi: 10.1093/jxb/eru333. Epub 2014 Aug 23.

17.

A Scalable Open-Source Pipeline for Large-Scale Root Phenotyping of Arabidopsis.

Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W.

Plant Cell. 2014 Jun;26(6):2390-2403. Epub 2014 Jun 10.

18.

Differential sRNA regulation in leaves and roots of sugarcane under water depletion.

Thiebaut F, Grativol C, Tanurdzic M, Carnavale-Bottino M, Vieira T, Motta MR, Rojas C, Vincentini R, Chabregas SM, Hemerly AS, Martienssen RA, Ferreira PC.

PLoS One. 2014 Apr 2;9(4):e93822. doi: 10.1371/journal.pone.0093822. eCollection 2014.

19.

Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica).

Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, Amin MR, Rahman MM.

Saudi J Biol Sci. 2014 Jan;21(1):3-12. doi: 10.1016/j.sjbs.2013.04.007. Epub 2013 May 3.

20.

Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots.

Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA.

BMC Genomics. 2013 Oct 11;14:701. doi: 10.1186/1471-2164-14-701.

Supplemental Content

Support Center