Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 50

1.

Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

Wakabayashi A, Ulirsch JC, Ludwig LS, Fiorini C, Yasuda M, Choudhuri A, McDonel P, Zon LI, Sankaran VG.

Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4434-9. doi: 10.1073/pnas.1521754113.

2.

Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants.

Perkins A, Xu X, Higgs DR, Patrinos GP, Arnaud L, Bieker JJ, Philipsen S; KLF1 Consensus Workgroup..

Blood. 2016 Apr 14;127(15):1856-62. doi: 10.1182/blood-2016-01-694331. Review.

3.
4.

SBR-Blood: systems biology repository for hematopoietic cells.

Lichtenberg J, Heuston EF, Mishra T, Keller CA, Hardison RC, Bodine DM.

Nucleic Acids Res. 2016 Jan 4;44(D1):D925-31. doi: 10.1093/nar/gkv1263.

5.

Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development.

Zhang J, Loyd MR, Randall MS, Morris JJ, Shah JG, Ney PA.

Cell Cycle. 2015;14(21):3441-53. doi: 10.1080/15384101.2015.1090067.

6.

CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.

Savic D, Partridge EC, Newberry KM, Smith SB, Meadows SK, Roberts BS, Mackiewicz M, Mendenhall EM, Myers RM.

Genome Res. 2015 Oct;25(10):1581-9. doi: 10.1101/gr.193540.115.

7.

The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells.

Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ.

Mol Cell Biol. 2015 Nov;35(21):3726-38. doi: 10.1128/MCB.00382-15.

8.

The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

Chung J, Bauer DE, Ghamari A, Nizzi CP, Deck KM, Kingsley PD, Yien YY, Huston NC, Chen C, Schultz IJ, Dalton AJ, Wittig JG, Palis J, Orkin SH, Lodish HF, Eisenstein RS, Cantor AB, Paw BH.

Sci Signal. 2015 Apr 14;8(372):ra34. doi: 10.1126/scisignal.aaa5903.

9.

KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.

Magor GW, Tallack MR, Gillinder KR, Bell CC, McCallum N, Williams B, Perkins AC.

Blood. 2015 Apr 9;125(15):2405-17. doi: 10.1182/blood-2014-08-590968.

10.

Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression.

Chlon TM, McNulty M, Goldenson B, Rosinski A, Crispino JD.

Haematologica. 2015 May;100(5):575-84. doi: 10.3324/haematol.2014.112714.

11.

Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation.

Ulirsch JC, Lacy JN, An X, Mohandas N, Mikkelsen TS, Sankaran VG.

PLoS Genet. 2014 Dec 18;10(12):e1004890. doi: 10.1371/journal.pgen.1004890.

12.

Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers.

Loft A, Forss I, Siersbæk MS, Schmidt SF, Larsen AS, Madsen JG, Pisani DF, Nielsen R, Aagaard MM, Mathison A, Neville MJ, Urrutia R, Karpe F, Amri EZ, Mandrup S.

Genes Dev. 2015 Jan 1;29(1):7-22. doi: 10.1101/gad.250829.114.

13.

The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis.

Bottardi S, Mavoungou L, Pak H, Daou S, Bourgoin V, Lakehal YA, Affar el B, Milot E.

PLoS Genet. 2014 Dec 4;10(12):e1004827. doi: 10.1371/journal.pgen.1004827.

14.

Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis.

Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC.

Genome Res. 2014 Dec;24(12):1945-62. doi: 10.1101/gr.164830.113.

15.

Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues.

Yien YY, Gnanapragasam MN, Gupta R, Rivella S, Bieker JJ.

Exp Hematol. 2015 Jan;43(1):65-70. doi: 10.1016/j.exphem.2014.08.007.

16.

NLS-tagging: an alternative strategy to tag nuclear proteins.

Giraud G, Stadhouders R, Conidi A, Dekkers DH, Huylebroeck D, Demmers JA, Soler E, Grosveld FG.

Nucleic Acids Res. 2014 Dec 1;42(21). doi: 10.1093/nar/gku869.

17.

Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation.

Hu W, Yuan B, Lodish HF.

Dev Cell. 2014 Sep 29;30(6):660-72. doi: 10.1016/j.devcel.2014.07.008.

18.

TMEM14C is required for erythroid mitochondrial heme metabolism.

Yien YY, Robledo RF, Schultz IJ, Takahashi-Makise N, Gwynn B, Bauer DE, Dass A, Yi G, Li L, Hildick-Smith GJ, Cooney JD, Pierce EL, Mohler K, Dailey TA, Miyata N, Kingsley PD, Garone C, Hattangadi SM, Huang H, Chen W, Keenan EM, Shah DI, Schlaeger TM, DiMauro S, Orkin SH, Cantor AB, Palis J, Koehler CM, Lodish HF, Kaplan J, Ward DM, Dailey HA, Phillips JD, Peters LL, Paw BH.

J Clin Invest. 2014 Oct;124(10):4294-304. doi: 10.1172/JCI76979.

19.

Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation.

Hattangadi SM, Martinez-Morilla S, Patterson HC, Shi J, Burke K, Avila-Figueroa A, Venkatesan S, Wang J, Paulsen K, Görlich D, Murata-Hori M, Lodish HF.

Blood. 2014 Sep 18;124(12):1931-40.

20.

Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor.

Wang X, Mendelsohn L, Rogers H, Leitman S, Raghavachari N, Yang Y, Yau YY, Tallack M, Perkins A, Taylor JG 6th, Noguchi CT, Kato GJ.

Blood. 2014 Aug 7;124(6):946-54. doi: 10.1182/blood-2013-11-539718.

Items per page

Supplemental Content

Support Center