Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 304

1.

Natural Variation in Resistance to Virus Infection in Dipteran Insects.

Palmer WH, Varghese FS, van Rij RP.

Viruses. 2018 Mar 9;10(3). pii: E118. doi: 10.3390/v10030118. Review.

2.

Vector species-specific association between natural Wolbachia infections and avian malaria in black fly populations.

Woodford L, Bianco G, Ivanova Y, Dale M, Elmer K, Rae F, Larcombe SD, Helm B, Ferguson HM, Baldini F.

Sci Rep. 2018 Mar 8;8(1):4188. doi: 10.1038/s41598-018-22550-z.

3.

The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti.

Chang CH, Liu YT, Weng SC, Chen IY, Tsao PN, Shiao SH.

PLoS Negl Trop Dis. 2018 Mar 5;12(3):e0006307. doi: 10.1371/journal.pntd.0006307. eCollection 2018 Mar.

4.

Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate.

Thomas S, Verma J, Woolfit M, O'Neill SL.

PLoS Pathog. 2018 Mar 1;14(3):e1006879. doi: 10.1371/journal.ppat.1006879. eCollection 2018 Mar.

5.

In tune with nature: Wolbachia does not prevent pre-copula acoustic communication in Aedes aegypti.

Gesto JSM, Araki AS, Caragata EP, de Oliveira CD, Martins AJ, Bruno RV, Moreira LA.

Parasit Vectors. 2018 Feb 22;11(1):109. doi: 10.1186/s13071-018-2695-x.

6.

Biological control of human disease vectors: a perspective on challenges and opportunities.

Thomas MB.

Biocontrol (Dordr). 2018;63(1):61-69. doi: 10.1007/s10526-017-9815-y. Epub 2017 May 10. Review.

7.

The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti.

Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP.

PLoS Pathog. 2018 Jan 25;14(1):e1006815. doi: 10.1371/journal.ppat.1006815. eCollection 2018 Jan.

8.

Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia.

Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG.

Genome Biol Evol. 2018 Feb 1;10(2):434-451. doi: 10.1093/gbe/evy012.

9.

The Zika Virus Epidemic in Brazil: From Discovery to Future Implications.

Lowe R, Barcellos C, Brasil P, Cruz OG, HonĂ³rio NA, Kuper H, Carvalho MS.

Int J Environ Res Public Health. 2018 Jan 9;15(1). pii: E96. doi: 10.3390/ijerph15010096. Review.

10.

Group B Wolbachia Strain-Dependent Inhibition of Arboviruses.

Schultz MJ, Connor JH, Frydman HM.

DNA Cell Biol. 2018 Jan;37(1):2-6. doi: 10.1089/dna.2017.4025. Epub 2018 Jan 3.

PMID:
29297702
11.

A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes.

Baughman T, Peterson C, Ortega C, Preston SR, Paton C, Williams J, Guy A, Omodei G, Johnson B, Williams H, O'Neill SL, Ritchie SA, Dobson SL, Madan D.

PLoS Negl Trop Dis. 2017 Dec 29;11(12):e0006142. doi: 10.1371/journal.pntd.0006142. eCollection 2017 Dec.

12.

Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti.

Terradas G, Allen SL, Chenoweth SF, McGraw EA.

Parasit Vectors. 2017 Dec 28;10(1):622. doi: 10.1186/s13071-017-2589-3.

13.

Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes.

Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O'Neill SL.

PLoS Pathog. 2017 Dec 7;13(12):e1006751. doi: 10.1371/journal.ppat.1006751. eCollection 2017 Dec.

14.

Using Wolbachia for Dengue Control: Insights from Modelling.

Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NM.

Trends Parasitol. 2018 Feb;34(2):102-113. doi: 10.1016/j.pt.2017.11.002. Epub 2017 Nov 25. Review.

PMID:
29183717
15.

Identification of Spiroplasmainsolitum symbionts in Anopheles gambiae.

Chepkemoi ST, Mararo E, Butungi H, Paredes J, Masiga D, Sinkins SP, Herren JK.

Wellcome Open Res. 2017 Sep 26;2:90. doi: 10.12688/wellcomeopenres.12468.1. eCollection 2017.

16.

Development and physiological effects of an artificial diet for Wolbachia-infected Aedes aegypti.

Dutra HLC, Rodrigues SL, Mansur SB, de Oliveira SP, Caragata EP, Moreira LA.

Sci Rep. 2017 Nov 16;7(1):15687. doi: 10.1038/s41598-017-16045-6.

17.

The burden of dengue, source reduction measures, and serotype patterns in Myanmar, 2011 to 2015-R2.

Oo PM, Wai KT, Harries AD, Shewade HD, Oo T, Thi A, Lin Z.

Trop Med Health. 2017 Nov 2;45:35. doi: 10.1186/s41182-017-0074-5. eCollection 2017.

18.

Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission.

Gomes FM, Hixson BL, Tyner MDW, Ramirez JL, Canepa GE, Alves E Silva TL, Molina-Cruz A, Keita M, Kane F, Traoré B, Sogoba N, Barillas-Mury C.

Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12566-12571. doi: 10.1073/pnas.1716181114. Epub 2017 Nov 7.

PMID:
29114059
19.

The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti.

Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, Liang X, Zhang F, Raikhel AS, Xi Z.

ISME J. 2018 Jan;12(1):277-288. doi: 10.1038/ismej.2017.174. Epub 2017 Nov 3.

20.

Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes.

Dodson BL, Andrews ES, Turell MJ, Rasgon JL.

PLoS Negl Trop Dis. 2017 Oct 30;11(10):e0006050. doi: 10.1371/journal.pntd.0006050. eCollection 2017 Oct.

Supplemental Content

Support Center