Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

2.

The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii.

Latomanski EA, Newton P, Khoo CA, Newton HJ.

PLoS Pathog. 2016 Dec 21;12(12):e1006101. doi: 10.1371/journal.ppat.1006101.

3.

From Q Fever to Coxiella burnetii Infection: a Paradigm Change.

Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D.

Clin Microbiol Rev. 2017 Jan;30(1):115-190. Review.

PMID:
27856520
4.

Identification of Mycobacterium avium subsp. hominissuis secreted proteins using an in vitro system mimicking the phagosomal environment.

Chinison JJ, Danelishvili L, Gupta R, Rose SJ, Babrak LM, Bermudez LE.

BMC Microbiol. 2016 Nov 9;16(1):270.

5.

Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages.

Colonne PM, Winchell CG, Graham JG, Onyilagha FI, MacDonald LJ, Doeppler HR, Storz P, Kurten RC, Beare PA, Heinzen RA, Voth DE.

PLoS Pathog. 2016 Oct 6;12(10):e1005915. doi: 10.1371/journal.ppat.1005915.

6.
7.

Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L.

Justis AV, Hansen B, Beare PA, King KB, Heinzen RA, Gilk SD.

Cell Microbiol. 2017 Jan;19(1). doi: 10.1111/cmi.12637.

PMID:
27345457
8.

Mechanism and Function of Type IV Secretion During Infection of the Human Host.

Gonzalez-Rivera C, Bhatty M, Christie PJ.

Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.VMBF-0024-2015.

9.

The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.

Weber MM, Faris R, van Schaik EJ, McLachlan JT, Wright WU, Tellez A, Roman VA, Rowin K, Case ED, Luo ZQ, Samuel JE.

Infect Immun. 2016 Aug 19;84(9):2524-33. doi: 10.1128/IAI.01554-15.

10.

Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro.

Fernandes TD, Cunha LD, Ribeiro JM, Massis LM, Lima-Junior DS, Newton HJ, Zamboni DS.

Infect Immun. 2016 Aug 19;84(9):2439-48. doi: 10.1128/IAI.00411-16.

11.

Coxiella burnetii dormancy in a fatal ten-year multisystem dysfunctional illness: case report.

Sukocheva OA, Manavis J, Kok TW, Turra M, Izzo A, Blumbergs P, Marmion BP.

BMC Infect Dis. 2016 Apr 18;16:165. doi: 10.1186/s12879-016-1497-z.

12.

Contrasting Lifestyles Within the Host Cell.

Di Russo Case E, Samuel JE.

Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.VMBF-0014-2015. Review.

13.

A repeat motif on a Coxiella effector protein facilitates apoptosis inhibition.

Raghavan R.

Virulence. 2016 May 18;7(4):369-71. doi: 10.1080/21505594.2016.1156834. No abstract available.

PMID:
26949987
14.

Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA.

PLoS One. 2016 Feb 24;11(2):e0149957. doi: 10.1371/journal.pone.0149957.

15.

Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii.

Graham JG, Winchell CG, Kurten RC, Voth DE.

Infect Immun. 2016 Apr 22;84(5):1438-45. doi: 10.1128/IAI.00012-16.

16.

Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

Rodríguez-Escudero M, Cid VJ, Molina M, Schulze-Luehrmann J, Lührmann A, Rodríguez-Escudero I.

PLoS One. 2016 Jan 28;11(1):e0148032. doi: 10.1371/journal.pone.0148032.

17.

Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages.

Bradley WP, Boyer MA, Nguyen HT, Birdwell LD, Yu J, Ribeiro JM, Weiss SR, Zamboni DS, Roy CR, Shin S.

Infect Immun. 2016 Mar 24;84(4):998-1015. doi: 10.1128/IAI.01536-15.

18.

The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin.

Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Lührmann A.

Virulence. 2016 May 18;7(4):400-12. doi: 10.1080/21505594.2016.1139280.

19.

Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.

Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, Pupko T, Shuman HA, Segal G.

Nat Genet. 2016 Feb;48(2):167-75. doi: 10.1038/ng.3481.

20.

Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA.

Cunha LD, Ribeiro JM, Fernandes TD, Massis LM, Khoo CA, Moffatt JH, Newton HJ, Roy CR, Zamboni DS.

Nat Commun. 2015 Dec 21;6:10205. doi: 10.1038/ncomms10205.

Items per page

Supplemental Content

Support Center