Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 47

1.

Identification and prediction of alternative transcription start sites that generate rod photoreceptor-specific transcripts from ubiquitously expressed genes.

Popova EY, Salzberg AC, Yang C, Zhang SS, Barnstable CJ.

PLoS One. 2017 Jun 22;12(6):e0179230. doi: 10.1371/journal.pone.0179230. eCollection 2017.

2.

RUNX1 cooperates with FLT3-ITD to induce leukemia.

Behrens K, Maul K, Tekin N, Kriebitzsch N, Indenbirken D, Prassolov V, Müller U, Serve H, Cammenga J, Stocking C.

J Exp Med. 2017 Mar 6;214(3):737-752. doi: 10.1084/jem.20160927. Epub 2017 Feb 17.

3.

Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors.

Youn M, Wang N, LaVasseur C, Bibikova E, Kam S, Glader B, Sakamoto KM, Narla A.

Haematologica. 2017 May;102(5):826-834. doi: 10.3324/haematol.2016.156257. Epub 2017 Feb 2.

4.

Widespread and dynamic translational control of red blood cell development.

Alvarez-Dominguez JR, Zhang X, Hu W.

Blood. 2017 Feb 2;129(5):619-629. doi: 10.1182/blood-2016-09-741835. Epub 2016 Nov 29.

PMID:
27899360
5.

Acetylation Mimics Within a Single Nucleosome Alter Local DNA Accessibility In Compacted Nucleosome Arrays.

Mishra LN, Pepenella S, Rogge R, Hansen JC, Hayes JJ.

Sci Rep. 2016 Oct 6;6:34808. doi: 10.1038/srep34808.

6.

Chromatin condensation during terminal erythropoiesis.

Zhao B, Yang J, Ji P.

Nucleus. 2016 Sep 2;7(5):425-429. Epub 2016 Aug 31. Review.

PMID:
27579498
7.

JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.

Shi J, Yuan B, Hu W, Lodish H.

Exp Hematol. 2016 Nov;44(11):1044-1058.e5. doi: 10.1016/j.exphem.2016.07.010. Epub 2016 Jul 26.

PMID:
27473563
8.

Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation.

Li Y, Schulz VP, Deng C, Li G, Shen Y, Tusi BK, Ma G, Stees J, Qiu Y, Steiner LA, Zhou L, Zhao K, Bungert J, Gallagher PG, Huang S.

Nucleic Acids Res. 2016 Sep 6;44(15):7173-88. doi: 10.1093/nar/gkw327. Epub 2016 May 3.

9.

Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells.

Li H, Shi J, Huang NJ, Pishesha N, Natarajan A, Eng JC, Lodish HF.

Haematologica. 2016 Jun;101(6):e216-9. doi: 10.3324/haematol.2015.135723. Epub 2016 Mar 11. No abstract available.

10.

A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages.

Edwards CR, Ritchie W, Wong JJ, Schmitz U, Middleton R, An X, Mohandas N, Rasko JE, Blobel GA.

Blood. 2016 Mar 9. pii: blood-2016-01-692764. [Epub ahead of print]

11.

Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, Rappoport JZ, Wickrema A, Yang J, Ji P.

Dev Cell. 2016 Mar 7;36(5):498-510. doi: 10.1016/j.devcel.2016.02.001.

12.

The LMO2 oncogene regulates DNA replication in hematopoietic cells.

Sincennes MC, Humbert M, Grondin B, Lisi V, Veiga DF, Haman A, Cazaux C, Mashtalir N, Affar el B, Verreault A, Hoang T.

Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1393-8. doi: 10.1073/pnas.1515071113. Epub 2016 Jan 13.

13.

Control of developmentally primed erythroid genes by combinatorial co-repressor actions.

Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli ML, Andrieu-Soler C, Lenhard B, Grosveld F, Soler E.

Nat Commun. 2015 Nov 23;6:8893. doi: 10.1038/ncomms9893.

14.

Epigenetic program and transcription factor circuitry of dendritic cell development.

Lin Q, Chauvistré H, Costa IG, Gusmao EG, Mitzka S, Hänzelmann S, Baying B, Klisch T, Moriggl R, Hennuy B, Smeets H, Hoffmann K, Benes V, Seré K, Zenke M.

Nucleic Acids Res. 2015 Nov 16;43(20):9680-93. doi: 10.1093/nar/gkv1056. Epub 2015 Oct 17.

15.

A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis.

Liang R, Campreciós G, Kou Y, McGrath K, Nowak R, Catherman S, Bigarella CL, Rimmelé P, Zhang X, Gnanapragasam MN, Bieker JJ, Papatsenko D, Ma'ayan A, Bresnick E, Fowler V, Palis J, Ghaffari S.

PLoS Genet. 2015 Oct 9;11(10):e1005526. doi: 10.1371/journal.pgen.1005526. eCollection 2015 Oct.

16.

Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development.

Zhang J, Loyd MR, Randall MS, Morris JJ, Shah JG, Ney PA.

Cell Cycle. 2015;14(21):3441-53. doi: 10.1080/15384101.2015.1090067.

17.

PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF.

Nature. 2015 Jun 25;522(7557):474-7. doi: 10.1038/nature14326. Epub 2015 May 11.

18.

The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

Chung J, Bauer DE, Ghamari A, Nizzi CP, Deck KM, Kingsley PD, Yien YY, Huston NC, Chen C, Schultz IJ, Dalton AJ, Wittig JG, Palis J, Orkin SH, Lodish HF, Eisenstein RS, Cantor AB, Paw BH.

Sci Signal. 2015 Apr 14;8(372):ra34. doi: 10.1126/scisignal.aaa5903.

19.

TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.

Papadopoulos P, Gutiérrez L, Demmers J, Scheer E, Pourfarzad F, Papageorgiou DN, Karkoulia E, Strouboulis J, van de Werken HJ, van der Linden R, Vandenberghe P, Dekkers DH, Philipsen S, Grosveld F, Tora L.

Mol Cell Biol. 2015 Jun;35(12):2103-18. doi: 10.1128/MCB.01370-14. Epub 2015 Apr 13.

20.

Epigenetic Determinants of Erythropoiesis: Role of the Histone Methyltransferase SetD8 in Promoting Erythroid Cell Maturation and Survival.

DeVilbiss AW, Sanalkumar R, Hall BD, Katsumura KR, de Andrade IF, Bresnick EH.

Mol Cell Biol. 2015 Jun;35(12):2073-87. doi: 10.1128/MCB.01422-14. Epub 2015 Apr 8.

Supplemental Content

Support Center