Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis.

Mewalal R, Yin H, Hu R, Jawdy S, Vion P, Tuskan GA, Le Tacon F, Labbé JL, Yang X.

Front Microbiol. 2019 Mar 18;10:515. doi: 10.3389/fmicb.2019.00515. eCollection 2019.

2.

Identifying High Confidence microRNAs in the Developing Seeds of Jatropha curcas.

Yang M, Lu H, Xue F, Ma L.

Sci Rep. 2019 Mar 14;9(1):4510. doi: 10.1038/s41598-019-41189-y.

3.

PmiRDiscVali: an integrated pipeline for plant microRNA discovery and validation.

Yu D, Wan Y, Ito H, Ma X, Xie T, Wang T, Shao C, Meng Y.

BMC Genomics. 2019 Feb 13;20(1):133. doi: 10.1186/s12864-019-5478-7.

4.

Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Medicago truncatula through High-Throughput Sequencing.

Cao C, Long R, Zhang T, Kang J, Wang Z, Wang P, Sun H, Yu J, Yang Q.

Int J Mol Sci. 2018 Dec 17;19(12). pii: E4076. doi: 10.3390/ijms19124076.

5.

Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea.

Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, Sharma M, Li C, Zhang B, Xin L, Kishor PBK, Varshney RK.

Plant Biotechnol J. 2019 May;17(5):914-931. doi: 10.1111/pbi.13026. Epub 2018 Dec 1.

6.

Expansion of Capsicum annuum fruit is linked to dynamic tissue-specific differential expression of miRNA and siRNA profiles.

Taller D, Bálint J, Gyula P, Nagy T, Barta E, Baksa I, Szittya G, Taller J, Havelda Z.

PLoS One. 2018 Jul 25;13(7):e0200207. doi: 10.1371/journal.pone.0200207. eCollection 2018. Erratum in: PLoS One. 2018 Aug 30;13(8):e0203582.

7.

Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes.

Neller KCM, Klenov A, Guzman JC, Hudak KA.

Front Plant Sci. 2018 May 3;9:589. doi: 10.3389/fpls.2018.00589. eCollection 2018.

8.

Identification and comparative analysis of microRNAs from tomato varieties showing contrasting response to ToLCV infections.

Tripathi A, Goswami K, Tiwari M, Mukherjee SK, Sanan-Mishra N.

Physiol Mol Biol Plants. 2018 Mar;24(2):185-202. doi: 10.1007/s12298-017-0482-3. Epub 2017 Dec 22.

9.
10.

Detecting and characterizing microRNAs of diverse genomic origins via miRvial.

Xia J, Li L, Li T, Fang Z, Zhang K, Zhou J, Peng H, Zhang W.

Nucleic Acids Res. 2017 Dec 1;45(21):e176. doi: 10.1093/nar/gkx834.

11.

Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests.

Vitsios DM, Kentepozidou E, Quintais L, Benito-Gutiérrez E, van Dongen S, Davis MP, Enright AJ.

Nucleic Acids Res. 2017 Dec 1;45(21):e177. doi: 10.1093/nar/gkx836.

12.

Non-coding RNAs and Their Roles in Stress Response in Plants.

Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M.

Genomics Proteomics Bioinformatics. 2017 Oct;15(5):301-312. doi: 10.1016/j.gpb.2017.01.007. Epub 2017 Oct 7. Review.

13.

Data on identification of conserved and novel miRNAs in Elettaria cardamomum.

Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK.

Data Brief. 2017 Sep 5;14:789-792. doi: 10.1016/j.dib.2017.08.037. eCollection 2017 Oct.

14.

High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying.

Feng JL, Yang ZJ, Chen SP, El-Kassaby YA, Chen H.

BMC Genomics. 2017 Jul 20;18(1):546. doi: 10.1186/s12864-017-3923-z.

15.

New technologies accelerate the exploration of non-coding RNAs in horticultural plants.

Liu D, Mewalal R, Hu R, Tuskan GA, Yang X.

Hortic Res. 2017 Jul 5;4:17031. doi: 10.1038/hortres.2017.31. eCollection 2017. Review.

16.

Global gene expression defines faded whorl specification of double flower domestication in Camellia.

Li X, Li J, Fan Z, Liu Z, Tanaka T, Yin H.

Sci Rep. 2017 Jun 9;7(1):3197. doi: 10.1038/s41598-017-03575-2.

17.

miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets.

Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S.

Bioinformatics. 2017 Aug 15;33(16):2446-2454. doi: 10.1093/bioinformatics/btx210.

18.

Rapid Evolution of microRNA Loci in the Brown Algae.

Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP, Coelho SM, Tarver JE.

Genome Biol Evol. 2017 Mar 1;9(3):740-749. doi: 10.1093/gbe/evx038.

19.

Response of microRNAs to cold treatment in the young spikes of common wheat.

Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G.

BMC Genomics. 2017 Feb 28;18(1):212. doi: 10.1186/s12864-017-3556-2.

20.

The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine.

Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M, Lovisolo C, Valle G, Schubert A.

Plant Physiol. 2017 Apr;173(4):2180-2195. doi: 10.1104/pp.16.01119. Epub 2017 Feb 24.

Supplemental Content

Support Center