Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 37

1.

A novel secretion and online-cleavage strategy for production of cecropin A in Escherichia coli.

Wang M, Huang M, Zhang J, Ma Y, Li S, Wang J.

Sci Rep. 2017 Aug 4;7(1):7368. doi: 10.1038/s41598-017-07411-5.

2.

Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa.

Marmont LS, Rich JD, Whitney JC, Whitfield GB, Almblad H, Robinson H, Parsek MR, Harrison JJ, Howell PL.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2892-2897. doi: 10.1073/pnas.1613606114. Epub 2017 Feb 27.

PMID:
28242707
3.

Are the curli proteins CsgE and CsgF intrinsically disordered?

Green A, Pham N, Osby K, Aram A, Claudius R, Patray S, Jayasinghe SA.

Intrinsically Disord Proteins. 2016 Mar 8;4(1):e1130675. doi: 10.1080/21690707.2015.1130675. eCollection 2016.

4.

Structural insights into functional amyloid inhibition in Gram -ve bacteria.

Hawthorne W, Rouse S, Sewell L, Matthews SJ.

Biochem Soc Trans. 2016 Dec 15;44(6):1643-1649. Review.

5.

Solution NMR structure of CsgE: Structural insights into a chaperone and regulator protein important for functional amyloid formation.

Shu Q, Krezel AM, Cusumano ZT, Pinkner JS, Klein R, Hultgren SJ, Frieden C.

Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7130-5. doi: 10.1073/pnas.1607222113. Epub 2016 Jun 13.

6.

Amyloid Structures as Biofilm Matrix Scaffolds.

Taglialegna A, Lasa I, Valle J.

J Bacteriol. 2016 Sep 9;198(19):2579-88. doi: 10.1128/JB.00122-16. Print 2016 Oct 1. Review.

7.

Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones.

Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N, Meisl G, Andreasen M, Fletcher C, Koch M, Darvill N, Scull N, Escalera-Maurer A, Sefer L, Wenman R, Lambert S, Jean J, Xu Y, Turner B, Kazarian SG, Chapman MR, Bubeck D, de Simone A, Knowles TP, Matthews SJ.

Sci Rep. 2016 Apr 21;6:24656. doi: 10.1038/srep24656.

8.

Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria.

Chahales P, Thanassi DG.

Microbiol Spectr. 2015 Oct;3(5). doi: 10.1128/microbiolspec.UTI-0018-2013. Review.

9.

Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers.

Reichhardt C, Jacobson AN, Maher MC, Uang J, McCrate OA, Eckart M, Cegelski L.

PLoS One. 2015 Oct 20;10(10):e0140388. doi: 10.1371/journal.pone.0140388. eCollection 2015.

10.

Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts.

Chorell E, Andersson E, Evans ML, Jain N, Götheson A, Åden J, Chapman MR, Almqvist F, Wittung-Stafshede P.

PLoS One. 2015 Oct 14;10(10):e0140194. doi: 10.1371/journal.pone.0140194. eCollection 2015.

11.

Bacterial amyloid formation: structural insights into curli biogensis.

Van Gerven N, Klein RD, Hultgren SJ, Remaut H.

Trends Microbiol. 2015 Nov;23(11):693-706. doi: 10.1016/j.tim.2015.07.010. Epub 2015 Oct 1. Review.

12.

Continuous and pulsed hydrogen-deuterium exchange and mass spectrometry characterize CsgE oligomerization.

Wang H, Shu Q, Rempel DL, Frieden C, Gross ML.

Biochemistry. 2015 Oct 27;54(42):6475-81. doi: 10.1021/acs.biochem.5b00871. Epub 2015 Oct 14.

13.

The Biology of the Escherichia coli Extracellular Matrix.

Hufnagel DA, Depas WH, Chapman MR.

Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MB-0014-2014.

14.

Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.

Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR.

FEMS Microbiol Rev. 2015 Sep;39(5):649-69. doi: 10.1093/femsre/fuv015. Epub 2015 Apr 22. Review.

15.

New insight into the molecular control of bacterial functional amyloids.

Taylor JD, Matthews SJ.

Front Cell Infect Microbiol. 2015 Apr 8;5:33. doi: 10.3389/fcimb.2015.00033. eCollection 2015. Review.

16.

The bacterial curli system possesses a potent and selective inhibitor of amyloid formation.

Evans ML, Chorell E, Taylor JD, Åden J, Götheson A, Li F, Koch M, Sefer L, Matthews SJ, Wittung-Stafshede P, Almqvist F, Chapman MR.

Mol Cell. 2015 Feb 5;57(3):445-55. doi: 10.1016/j.molcel.2014.12.025. Epub 2015 Jan 22.

17.

Structure of the nonameric bacterial amyloid secretion channel.

Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5439-44. doi: 10.1073/pnas.1411942111. Epub 2014 Dec 1.

18.

Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG.

Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, Remaut H.

Nature. 2014 Dec 11;516(7530):250-3. doi: 10.1038/nature13768. Epub 2014 Sep 14.

19.

Fold modulating function: bacterial toxins to functional amyloids.

Syed AK, Boles BR.

Front Microbiol. 2014 Aug 1;5:401. doi: 10.3389/fmicb.2014.00401. eCollection 2014. Review.

20.

The bacterial amyloid curli is associated with urinary source bloodstream infection.

Hung C, Marschall J, Burnham CA, Byun AS, Henderson JP.

PLoS One. 2014 Jan 20;9(1):e86009. doi: 10.1371/journal.pone.0086009. eCollection 2014.

Supplemental Content

Support Center