Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1.

Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C.

Oncogenesis. 2017 Jul 31;6(7):e368. doi: 10.1038/oncsis.2017.60.

2.

Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.

Skyberg R, Sun C, Hill DL.

J Neurosci. 2017 Aug 9;37(32):7619-7630. doi: 10.1523/JNEUROSCI.3838-16.2017. Epub 2017 Jul 4.

PMID:
28676575
3.

EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

Xu X, Pozzo-Miller L.

J Physiol. 2017 Aug 15;595(16):5699-5712. doi: 10.1113/JP274450. Epub 2017 Jul 12.

PMID:
28621434
4.

Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain.

Hulbert SW, Jiang YH.

Neurosci Bull. 2017 Apr;33(2):205-218. doi: 10.1007/s12264-017-0112-7. Epub 2017 Mar 7. Review.

5.

A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation.

Lessing D, Dial TO, Wei C, Payer B, Carrette LL, Kesner B, Szanto A, Jadhav A, Maloney DJ, Simeonov A, Theriault J, Hasaka T, Bedalov A, Bartolomei MS, Lee JT.

Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14366-14371. doi: 10.1073/pnas.1617597113. Epub 2016 Nov 23.

6.

MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways.

Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M, Du N, Liu L, Guo B, Hou N, Han J, Liu S, Liu N, Zhao X, Wang L, Chen Y, Huang C.

EBioMedicine. 2017 Feb;16:87-100. doi: 10.1016/j.ebiom.2017.01.021. Epub 2017 Jan 17.

7.

MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice.

Krishnan K, Lau BY, Ewall G, Huang ZJ, Shea SD.

Nat Commun. 2017 Jan 18;8:14077. doi: 10.1038/ncomms14077.

8.

Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome.

Banerjee A, Rikhye RV, Breton-Provencher V, Tang X, Li C, Li K, Runyan CA, Fu Z, Jaenisch R, Sur M.

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7287-E7296. Epub 2016 Nov 1.

9.

Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons.

Sampathkumar C, Wu YJ, Vadhvani M, Trimbuch T, Eickholt B, Rosenmund C.

Elife. 2016 Oct 26;5. pii: e19374. doi: 10.7554/eLife.19374.

10.

A review of Rett syndrome (RTT) with induced pluripotent stem cells.

Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B.

Stem Cell Investig. 2016 Sep 28;3:52. eCollection 2016. Review.

11.

Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome.

Veeraragavan S, Wan YW, Connolly DR, Hamilton SM, Ward CS, Soriano S, Pitcher MR, McGraw CM, Huang SG, Green JR, Yuva LA, Liang AJ, Neul JL, Yasui DH, LaSalle JM, Liu Z, Paylor R, Samaco RC.

Hum Mol Genet. 2016 Aug 1;25(15):3284-3302. doi: 10.1093/hmg/ddw178. Epub 2016 Jun 30.

12.

Developmental Dynamics of Rett Syndrome.

Feldman D, Banerjee A, Sur M.

Neural Plast. 2016;2016:6154080. doi: 10.1155/2016/6154080. Epub 2016 Jan 31. Review.

13.

Acute and crucial requirement for MeCP2 function upon transition from early to late adult stages of brain maturation.

Du F, Nguyen MV, Karten A, Felice CA, Mandel G, Ballas N.

Hum Mol Genet. 2016 May 1;25(9):1690-702. doi: 10.1093/hmg/ddw038. Epub 2016 Feb 16.

14.

Should psychiatry deal only with mental disorders without an identified medical aetiology?

Arango C, Fraguas D.

World Psychiatry. 2016 Feb;15(1):22-3. doi: 10.1002/wps.20283. No abstract available.

15.

Rett Syndrome: Crossing the Threshold to Clinical Translation.

Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC.

Trends Neurosci. 2016 Feb;39(2):100-13. doi: 10.1016/j.tins.2015.12.008. Review.

16.

Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links.

Hulbert SW, Jiang YH.

Neuroscience. 2016 May 3;321:3-23. doi: 10.1016/j.neuroscience.2015.12.040. Epub 2015 Dec 28. Review.

17.

Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

Meng L, Ohman-Gault L, Ma L, Krimm RF.

eNeuro. 2015 Dec 31;2(6). pii: ENEURO.0097-15.2015. doi: 10.1523/ENEURO.0097-15.2015. eCollection 2015 Nov-Dec.

18.

Characterizing autism spectrum disorders by key biochemical pathways.

Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK.

Front Neurosci. 2015 Sep 24;9:313. doi: 10.3389/fnins.2015.00313. eCollection 2015. Review.

19.

MECP2 disorders: from the clinic to mice and back.

Lombardi LM, Baker SA, Zoghbi HY.

J Clin Invest. 2015 Aug 3;125(8):2914-23. doi: 10.1172/JCI78167. Epub 2015 Aug 3. Review.

20.

MECP2, a gene associated with Rett syndrome in humans, shows conserved coding regions, independent Alu insertions, and a novel transcript across primate evolution.

Viana MC, Menezes AN, Moreira MA, Pissinatti A, Seuánez HN.

BMC Genet. 2015 Jul 7;16:77. doi: 10.1186/s12863-015-0240-x.

Supplemental Content

Support Center