Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Time resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program.

Amariei C, Machné R, Stolc V, Soga T, Tomita M, Murray DB.

Microb Cell. 2014 Sep 1;1(9):279-288. doi: 10.15698/mic2014.09.166.

2.

Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes.

Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T.

Elife. 2017 Mar 23;6. pii: e22510. doi: 10.7554/eLife.22510.

3.

Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.

Platt JL, Kent NA, Kimmel AR, Harwood AJ.

Genome Res. 2017 Apr;27(4):591-600. doi: 10.1101/gr.216309.116. Epub 2017 Mar 22.

4.

MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers.

Chereji RV, Ocampo J, Clark DJ.

Mol Cell. 2017 Feb 2;65(3):565-577.e3. doi: 10.1016/j.molcel.2016.12.009.

PMID:
28157509
5.

Genomes of Multicellular Organisms Have Evolved to Attract Nucleosomes to Promoter Regions.

Tompitak M, Vaillant C, Schiessel H.

Biophys J. 2017 Feb 7;112(3):505-511. doi: 10.1016/j.bpj.2016.12.041. Epub 2017 Jan 25.

PMID:
28131316
6.

The Chd1 chromatin remodeler shifts hexasomes unidirectionally.

Levendosky RF, Sabantsev A, Deindl S, Bowman GD.

Elife. 2016 Dec 29;5. pii: e21356. doi: 10.7554/eLife.21356.

7.

Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome.

Bowman GD, McKnight JN.

Bioessays. 2017 Jan;39(1):1-8. doi: 10.1002/bies.201600183. Epub 2016 Nov 16.

PMID:
27862071
8.

Genomic Nucleosome Organization Reconstituted with Pure Proteins.

Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL, Pugh BF, Korber P.

Cell. 2016 Oct 20;167(3):709-721.e12. doi: 10.1016/j.cell.2016.09.045.

PMID:
27768892
9.

Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters.

Dreos R, Ambrosini G, Bucher P.

PLoS Comput Biol. 2016 Oct 7;12(10):e1005144. doi: 10.1371/journal.pcbi.1005144. eCollection 2016 Oct.

10.

Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome.

González S, García A, Vázquez E, Serrano R, Sánchez M, Quintales L, Antequera F.

Genome Res. 2016 Nov;26(11):1532-1543. Epub 2016 Sep 23.

11.

Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions.

Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J.

Sci Rep. 2016 Sep 23;6:33970. doi: 10.1038/srep33970.

12.

Dynamics of Nucleosome Positioning Maturation following Genomic Replication.

Vasseur P, Tonazzini S, Ziane R, Camasses A, Rando OJ, Radman-Livaja M.

Cell Rep. 2016 Sep 6;16(10):2651-65. doi: 10.1016/j.celrep.2016.07.083. Epub 2016 Aug 25.

13.

Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin.

Xiong J, Gao S, Dui W, Yang W, Chen X, Taverna SD, Pearlman RE, Ashlock W, Miao W, Liu Y.

Nucleic Acids Res. 2016 Dec 1;44(21):10091-10105. Epub 2016 Aug 3.

14.

Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex.

Tramantano M, Sun L, Au C, Labuz D, Liu Z, Chou M, Shen C, Luk E.

Elife. 2016 Jul 20;5. pii: e14243. doi: 10.7554/eLife.14243.

15.

Nucleosome Positioning.

Nishida H.

ISRN Mol Biol. 2012 Oct 15;2012:245706. doi: 10.5402/2012/245706. eCollection 2012. Review.

16.

Noncoding Transcription Is a Driving Force for Nucleosome Instability in spt16 Mutant Cells.

Feng J, Gan H, Eaton ML, Zhou H, Li S, Belsky JA, MacAlpine DM, Zhang Z, Li Q.

Mol Cell Biol. 2016 Jun 15;36(13):1856-67. doi: 10.1128/MCB.00152-16. Print 2016 Jul 1.

17.

Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.

Fennessy RT, Owen-Hughes T.

Nucleic Acids Res. 2016 Sep 6;44(15):7189-203. doi: 10.1093/nar/gkw331. Epub 2016 Apr 22.

18.

A deformation energy-based model for predicting nucleosome dyads and occupancy.

Liu G, Xing Y, Zhao H, Wang J, Shang Y, Cai L.

Sci Rep. 2016 Apr 7;6:24133. doi: 10.1038/srep24133.

19.

Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler.

McKnight JN, Tsukiyama T, Bowman GD.

Genome Res. 2016 May;26(5):693-704. doi: 10.1101/gr.199919.115. Epub 2016 Mar 18.

20.

Nucleosome repositioning underlies dynamic gene expression.

Nocetti N, Whitehouse I.

Genes Dev. 2016 Mar 15;30(6):660-72. doi: 10.1101/gad.274910.115. Epub 2016 Mar 10.

Supplemental Content

Support Center