Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress.

Basu S, Giri RK, Benazir I, Kumar S, Rajwanshi R, Dwivedi SK, Kumar G.

Physiol Mol Biol Plants. 2017 Oct;23(4):837-850. doi: 10.1007/s12298-017-0477-0. Epub 2017 Oct 12.

PMID:
29158633
2.

2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars.

Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B, Wang GX, Zhou W.

Sci Rep. 2017 Sep 5;7(1):10443. doi: 10.1038/s41598-017-09708-x.

3.

A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response.

Foster KJ, Miklavcic SJ.

Front Plant Sci. 2017 Jul 28;8:1326. doi: 10.3389/fpls.2017.01326. eCollection 2017.

4.

Trait-based model development to support breeding programs. A case study for salt tolerance and rice.

Paleari L, Movedi E, Confalonieri R.

Sci Rep. 2017 Jun 28;7(1):4352. doi: 10.1038/s41598-017-04022-y.

5.

Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins.

Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M.

Front Plant Sci. 2017 Jun 8;8:948. doi: 10.3389/fpls.2017.00948. eCollection 2017. Review.

6.

Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.

Yaish MW, Patankar HV, Assaha DVM, Zheng Y, Al-Yahyai R, Sunkar R.

BMC Genomics. 2017 Mar 22;18(1):246. doi: 10.1186/s12864-017-3633-6.

7.

Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy.

Fedi F, O'Neill CM, Menard G, Trick M, Dechirico S, Corbineau F, Bailly C, Eastmond PJ, Penfield S.

Plant Physiol. 2017 May;174(1):276-283. doi: 10.1104/pp.16.01556. Epub 2017 Mar 14.

8.

The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii.

Tao Q, Jupa R, Luo J, Lux A, Kováč J, Wen Y, Zhou Y, Jan J, Liang Y, Li T.

J Exp Bot. 2017 Jan 1;68(3):739-751. doi: 10.1093/jxb/erw453.

9.

The Role of Silicon in Higher Plants under Salinity and Drought Stress.

Coskun D, Britto DT, Huynh WQ, Kronzucker HJ.

Front Plant Sci. 2016 Jul 18;7:1072. doi: 10.3389/fpls.2016.01072. eCollection 2016. Review.

10.

Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants.

Horie T, Karahara I, Katsuhara M.

Rice (N Y). 2012 Dec;5(1):11. doi: 10.1186/1939-8433-5-11. Epub 2012 Jun 22.

11.

Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species.

Vitali V, Bellati J, Soto G, Ayub ND, Amodeo G.

AoB Plants. 2015 Nov 24;7. pii: plv136. doi: 10.1093/aobpla/plv136.

12.

The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana.

Martínez-Ballesta M, Moreno-Fernández DA, Castejón D, Ochando C, Morandini PA, Carvajal M.

Front Plant Sci. 2015 Jul 15;6:524. doi: 10.3389/fpls.2015.00524. eCollection 2015.

13.

Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives.

Yaish MW, Kumar PP.

Front Plant Sci. 2015 May 18;6:348. doi: 10.3389/fpls.2015.00348. eCollection 2015.

14.

PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

Nath M, Garg B, Sahoo RK, Tuteja N.

Plant Signal Behav. 2015;10(4):e992289. doi: 10.4161/15592324.2014.992289.

15.

Regulation of Na(+) fluxes in plants.

Maathuis FJ, Ahmad I, Patishtan J.

Front Plant Sci. 2014 Sep 16;5:467. doi: 10.3389/fpls.2014.00467. eCollection 2014. Review.

16.

Genome duplication improves rice root resistance to salt stress.

Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y.

Rice (N Y). 2014 Sep 2;7(1):15. doi: 10.1186/s12284-014-0015-4. eCollection 2014.

17.

Radial transport of nutrients: the plant root as a polarized epithelium.

Barberon M, Geldner N.

Plant Physiol. 2014 Oct;166(2):528-37. doi: 10.1104/pp.114.246124. Epub 2014 Aug 18. Review.

18.

K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.).

Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ.

PLoS One. 2013;8(2):e57767. doi: 10.1371/journal.pone.0057767. Epub 2013 Feb 27.

19.

Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?

Platten JD, Egdane JA, Ismail AM.

BMC Plant Biol. 2013 Feb 27;13:32. doi: 10.1186/1471-2229-13-32.

20.

Identification and expression of nine oak aquaporin genes in the primary root axis of two oak species, Quercus petraea and Quercus robur.

Rasheed-Depardieu C, Parent C, Crèvecoeur M, Parelle J, Tatin-Froux F, Le Provost G, Capelli N.

PLoS One. 2012;7(12):e51838. doi: 10.1371/journal.pone.0051838. Epub 2012 Dec 17.

Supplemental Content

Support Center