Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea.

Leao T, Castelão G, Korobeynikov A, Monroe EA, Podell S, Glukhov E, Allen EE, Gerwick WH, Gerwick L.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3198-3203. doi: 10.1073/pnas.1618556114. Epub 2017 Mar 6.

PMID:
28265051
2.

Alkynyl-Containing Peptides of Marine Origin: A Review.

Chai QY, Yang Z, Lin HW, Han BN.

Mar Drugs. 2016 Nov 23;14(11). pii: E216. Review.

3.

A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB.

Cummings SL, Barbé D, Leao TF, Korobeynikov A, Engene N, Glukhov E, Gerwick WH, Gerwick L.

BMC Microbiol. 2016 Aug 30;16(1):198. doi: 10.1186/s12866-016-0817-1.

4.

A fluorogenic screening platform enables directed evolution of an alkyne biosynthetic tool.

Zhu X, Shieh P, Su M, Bertozzi CR, Zhang W.

Chem Commun (Camb). 2016 Sep 28;52(75):11239-42. doi: 10.1039/c6cc05990b. Epub 2016 Aug 25.

PMID:
27561030
5.

Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future.

Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S.

Mar Drugs. 2016 May 17;14(5). pii: E97. doi: 10.3390/md14050097. Review.

6.

Bacterial Genome Mining of Enzymatic Tools for Alkyne Biosynthesis.

Zhu X, Su M, Manickam K, Zhang W.

ACS Chem Biol. 2015 Dec 18;10(12):2785-93. doi: 10.1021/acschembio.5b00641. Epub 2015 Oct 12.

7.

Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages.

León-Zayas R, Novotny M, Podell S, Shepard CM, Berkenpas E, Nikolenko S, Pevzner P, Lasken RS, Bartlett DH.

Appl Environ Microbiol. 2015 Dec;81(24):8265-76. doi: 10.1128/AEM.01659-15. Epub 2015 Sep 18.

8.

Draft Genome Assembly of Filamentous Brackish Cyanobacterium Limnoraphis robusta Strain CS-951.

Willis A, Parks M, Burford MA.

Genome Announc. 2015 Sep 3;3(5). pii: e00846-15. doi: 10.1128/genomeA.00846-15.

9.

Expanding the Described Metabolome of the Marine Cyanobacterium Moorea producens JHB through Orthogonal Natural Products Workflows.

Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Korobeynikov A, Sherman DH, Murray TF, Gerwick L, Dorrestein PC, Gerwick WH.

PLoS One. 2015 Jul 29;10(7):e0133297. doi: 10.1371/journal.pone.0133297. eCollection 2015.

10.

Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria.

Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH.

J Nat Prod. 2015 Jul 24;78(7):1671-82. doi: 10.1021/acs.jnatprod.5b00301. Epub 2015 Jul 7.

11.

Microseiramide from the Freshwater Cyanobacterium Microseira sp. UIC 10445.

Luo S, Krunic A, Chlipala GE, Orjala J.

Phytochem Lett. 2015 Sep 1;13:47-52.

12.

Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium.

Krishnakumar S, Gaudana SB, Vinh NX, Viswanathan GA, Chetty M, Wangikar PP.

PLoS One. 2015 May 14;10(5):e0125148. doi: 10.1371/journal.pone.0125148. eCollection 2015.

13.

Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria.

Calteau A, Fewer DP, Latifi A, Coursin T, Laurent T, Jokela J, Kerfeld CA, Sivonen K, Piel J, Gugger M.

BMC Genomics. 2014 Nov 18;15:977. doi: 10.1186/1471-2164-15-977.

14.

Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella.

Kwan JC, Tianero MD, Donia MS, Wyche TP, Bugni TS, Schmidt EW.

PLoS One. 2014 May 2;9(5):e95850. doi: 10.1371/journal.pone.0095850. eCollection 2014.

15.

Lipopeptides from the tropical marine cyanobacterium Symploca sp.

Mevers E, Haeckl FP, Boudreau PD, Byrum T, Dorrestein PC, Valeriote FA, Gerwick WH.

J Nat Prod. 2014 Apr 25;77(4):969-75. doi: 10.1021/np401051z. Epub 2014 Mar 3.

16.

Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous cyanobacteria from coniform mats.

Liang B, Wu TD, Sun HJ, Vali H, Guerquin-Kern JL, Wang CH, Bosak T.

PLoS One. 2014 Feb 7;9(2):e88142. doi: 10.1371/journal.pone.0088142. eCollection 2014.

17.

Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer.

Kothari A, Vaughn M, Garcia-Pichel F.

Front Microbiol. 2013 Dec 11;4:363. doi: 10.3389/fmicb.2013.00363. eCollection 2013.

18.

Identification of harmful cyanobacteria in the Sacramento-San Joaquin Delta and Clear Lake, California by DNA barcoding.

Kurobe T, Baxa DV, Mioni CE, Kudela RM, Smythe TR, Waller S, Chapman AD, Teh SJ.

Springerplus. 2013 Sep 30;2:491. doi: 10.1186/2193-1801-2-491. eCollection 2013.

19.

A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa.

Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT.

PLoS One. 2013 Aug 12;8(8):e70747. doi: 10.1371/journal.pone.0070747. eCollection 2013.

20.

Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges.

Woodhouse JN, Fan L, Brown MV, Thomas T, Neilan BA.

ISME J. 2013 Sep;7(9):1842-51. doi: 10.1038/ismej.2013.65. Epub 2013 Apr 18.

Supplemental Content

Support Center