Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.

Comparing spiking and slow wave activity from invasive electroencephalography in patients with and without seizures.

Lundstrom BN, Meisel C, Van Gompel J, Stead M, Worrell G.

Clin Neurophysiol. 2018 May;129(5):909-919. doi: 10.1016/j.clinph.2018.02.006. Epub 2018 Feb 27.

PMID:
29550651
2.

Efficient communication dynamics on macro-connectome, and the propagation speed.

Shimono M, Hatano N.

Sci Rep. 2018 Feb 6;8(1):2510. doi: 10.1038/s41598-018-20591-y.

3.

Neural Correlates of Unconsciousness in Large-Scale Brain Networks.

Mashour GA, Hudetz AG.

Trends Neurosci. 2018 Mar;41(3):150-160. doi: 10.1016/j.tins.2018.01.003. Epub 2018 Feb 3. Review.

PMID:
29409683
4.

Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting.

Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP.

Neuron. 2018 Jan 3;97(1):221-230.e4. doi: 10.1016/j.neuron.2017.11.020. Epub 2017 Dec 14.

PMID:
29249289
5.

The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.

Miyamoto D, Hirai D, Murayama M.

Front Neural Circuits. 2017 Nov 22;11:92. doi: 10.3389/fncir.2017.00092. eCollection 2017.

6.

Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive.

Eban-Rothschild A, Appelbaum L, de Lecea L.

Neuropsychopharmacology. 2018 Apr;43(5):937-952. doi: 10.1038/npp.2017.294. Epub 2017 Dec 5. Review.

PMID:
29206811
7.

Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

Nir Y, Andrillon T, Marmelshtein A, Suthana N, Cirelli C, Tononi G, Fried I.

Nat Med. 2017 Dec;23(12):1474-1480. doi: 10.1038/nm.4433. Epub 2017 Nov 6.

PMID:
29106402
8.

Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation.

Yordanova J, Kirov R, Verleger R, Kolev V.

Sci Rep. 2017 Nov 3;7(1):14496. doi: 10.1038/s41598-017-15195-x.

9.

In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex.

Tüshaus L, Omlin X, Tuura RO, Federspiel A, Luechinger R, Staempfli P, Koenig T, Achermann P.

Sci Rep. 2017 Nov 3;7(1):14993. doi: 10.1038/s41598-017-12890-7.

10.

Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings.

Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, Doyle W, Buzsáki G, Devinsky O, Parra LC, A Liu A.

Nat Commun. 2017 Oct 31;8(1):1199. doi: 10.1038/s41467-017-01045-x. Erratum in: Nat Commun. 2018 Feb 28;9(1):949.

11.

Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations.

Yordanova J, Kolev V, Bruns E, Kirov R, Verleger R.

Sleep. 2017 Nov 1;40(11). doi: 10.1093/sleep/zsx151.

12.

Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.

Song I, Orosz I, Chervoneva I, Waldman ZJ, Fried I, Wu C, Sharan A, Salamon N, Gorniak R, Dewar S, Bragin A, Engel J Jr, Sperling MR, Staba R, Weiss SA.

Epilepsia. 2017 Nov;58(11):1972-1984. doi: 10.1111/epi.13912. Epub 2017 Sep 26.

PMID:
28948998
13.

Traveling Slow Oscillations During Sleep: A Marker of Brain Connectivity in Childhood.

Kurth S, Riedner BA, Dean DC, O'Muircheartaigh J, Huber R, Jenni OG, Deoni SCL, LeBourgeois MK.

Sleep. 2017 Sep 1;40(9). doi: 10.1093/sleep/zsx121.

PMID:
28934529
14.

Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles.

Cox R, Schapiro AC, Manoach DS, Stickgold R.

Front Hum Neurosci. 2017 Sep 5;11:433. doi: 10.3389/fnhum.2017.00433. eCollection 2017.

15.

Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

Schwalm M, Schmid F, Wachsmuth L, Backhaus H, Kronfeld A, Aedo Jury F, Prouvot PH, Fois C, Albers F, van Alst T, Faber C, Stroh A.

Elife. 2017 Sep 15;6. pii: e27602. doi: 10.7554/eLife.27602.

16.

Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels.

Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, Fagan AM, Mignot E, Zempel JM, Claassen JAHR, Holtzman DM.

Brain. 2017 Aug 1;140(8):2104-2111. doi: 10.1093/brain/awx148.

PMID:
28899014
17.

Organic electronics for high-resolution electrocorticography of the human brain.

Khodagholy D, Gelinas JN, Zhao Z, Yeh M, Long M, Greenlee JD, Doyle W, Devinsky O, Buzsáki G.

Sci Adv. 2016 Nov 9;2(11):e1601027. doi: 10.1126/sciadv.1601027. eCollection 2016 Nov.

18.

Dynamic reconfiguration of cortical functional connectivity across brain states.

Stitt I, Hollensteiner KJ, Galindo-Leon E, Pieper F, Fiedler E, Stieglitz T, Engler G, Nolte G, Engel AK.

Sci Rep. 2017 Aug 18;7(1):8797. doi: 10.1038/s41598-017-08050-6.

19.

Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G.

J Neurosci. 2017 Sep 20;37(38):9132-9148. doi: 10.1523/JNEUROSCI.1303-17.2017. Epub 2017 Aug 16.

20.

Optogenetic Investigation of Arousal Circuits.

Tyree SM, de Lecea L.

Int J Mol Sci. 2017 Aug 15;18(8). pii: E1773. doi: 10.3390/ijms18081773. Review.

Supplemental Content

Support Center